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Abstract

We formulate and compare optimization models of investment in renew-
able generation using a suite of social planning models that compute
optimal generation capacity investments for a hydro-dominated electric-
ity system where inflow uncertainty results in a risk of energy shortage.
The models optimize the expected cost of capacity expansion and oper-
ation allowing for investments in hydro, geothermal, solar, wind, and
thermal plant, as well as battery storage for smoothing load profiles. A
novel feature is the integration of uncertain seasonal hydroelectric energy
supply and short-term variability in renewable supply in a two-stage
stochastic programming framework. The models are applied to data from
the New Zealand electricity system and used to estimate the costs of mov-
ing to a 100 % renewable electricity system by 2035. We also explore the
outcomes obtained when applying different forms of CO2 constraint that
limit respectively non-renewable capacity, non-renewable generation, and
CO2 emissions on average, almost surely, or in a chance-constrained set-
ting, and show how our models can be used to investigate the merits
of a proposed pumped-hydro scheme in New Zealand’s South Island.
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1 Introduction

In this paper we study investment in renewable generation under uncertainty
There has been much attention devoted to capacity planning models to design
electricity systems that will deliver (close to) 100 % renewable electricity. In
most electricity systems renewable energy comes from either wind power or
solar energy. Since this is intermittent, the planning problem must account
for uncertainty. Renewable energy can also come from hydroelectricity and
geothermal power. Inflows to hydroelectricity reservoirs are uncertain, but
at a different time-scale, and in many cases there is some control over their
release. Run-of-river hydroelectric plants on the other hand convert uncertain
inflows into uncertain levels of energy. Geothermal power is more predictable
(although exploration involves significant uncertainties at the design stage),
but after drilling it is a reliable base-load energy source. Finally nuclear power
is typically treated as non-renewable, but can be a useful technology if green-
house gas emissions are to be reduced. Failure scenarios are very infrequent
but extremely costly.

When the generation of electricity comes from sources with uncertain fuel
supply, some care must be taken in defining 100 % renewable. The strictest
definition would admit no non-renewable generation under any realization of
the uncertainty. One would expect this to be very expensive in terms of both
capital investment and operating cost. In New Zealand, the Government is
seeking an electricity system that is 100 % renewable in a normal hydrology
year. This could be interpreted in a number of ways. One option is to model this
as a chance constraint: i.e., the probability of any year having 100 % renewable
generation is at least 1− α, where α is chosen appropriately. We show in our
calculations that such a policy is not guaranteed to have low emissions when
averaged over all possible hydrological years, while being more expensive than
competing plans in terms of capital and operating costs.

In this paper we develop a suite of models for investment in renewable
generation that incorporate 100 % renewable constraints in a variety of ways.
We study two forms of storage that might make such a constraint easier to
satisfy. Within a day, battery storage can be used to transfer energy between
time periods. This can be used to accommodate more intermittent energy
(wind and solar) that otherwise would be wasted. Over a longer time horizon,
hydroelectric reservoir storage can be used to transfer energy from season to
season to account for low seasonal inflows. We provide mathematical models
for both these phenomena, and demonstrate their usefulness on an example
based on New Zealand data.

The contributions of our paper are as follows.

1. We describe how to incorporate multiple scales of uncertainty into a two-
stage electricity planning model.

2. We expose the effects of adopting different performance indicators on the
outcomes of the models.
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3. We show how imposing plausible constraints on non-renewable capacity
(e.g. as a political position) might lead to suboptimal outcomes.

One concern is for markets with a lot of stored hydroelectricity (such as
New Zealand) that provide plenty of ramping capacity. We provide examples
of the use of our model for supply adequacy when reservoir inflows, wind, and
solar energy are uncertain or variable. To do this we shall use New Zealand
as a case study and build up a new screening curve stochastic optimiza-
tion model for capacity planning that accommodates this. We create the first
stochastic system optimization model of the New Zealand electricity system,
explicitly targeted to CO2 emission reduction, and focusing on the interrela-
tionship between uncertain seasonal hydroelectricity energy supply and short
term changes in wind and solar supply. We illuminate the differences between
applying different forms of CO2 constraint. Imposing regulatory constraints
(such as dictating 100 % renewable capacity) without careful thought can
lead to unforeseen outcomes. Our model shows that one should focus on con-
straining CO2 emissions: the outcomes from solving the model then give the
mix of generation plant that one might hope to see. In particular we inves-
tigate constraints on non-renewable capacity, non-renewable generation, CO2

emissions, and a chance constraint that limits the frequency of years that use
non-renewable generation.

Our focus in this paper is on a central planning model for optimizing the
mix of generation plant to reach New Zealand’s net-zero carbon objectives
expressed in various forms. The results of this model give a first-best solu-
tion that one might aim for by choosing appropriate policy settings. New
Zealand has an energy-only wholesale electricity pool market in which gener-
ation investments are made on a commercial basis. It also has an emissions
trading scheme that requires CO2-emitting entities to surrender CO2 permits
that are bought and sold by auction on a regular basis. The price of these per-
mits responds to emissions budgets that are recommended by the New Zealand
Climate Change Commission. The models in this paper give some indication
of the minimum extra costs faced by the electricity system of setting these
budgets.

The social planner in our models is assumed to be risk neutral. Commercial
investors in electricity generation capacity are typically risk-averse, and so are
sensitive to the volatility of electricity prices and emission prices. We have
chosen in this paper to ignore these aspects which we continue to explore
in related work Ferris and Philpott (2023). A full study of price volatility
and its effect on investment requires a risked competitive equilibrium model
where risk-averse investors choose capacities and operations to maximize risk-
adjusted expected returns at equilibrium prices. In the absence of a complete
market for risk, this equilibrium will in general not have the same outcomes
as a risk-averse central planning model and the prices that emerge from this
model as dual variables (see, e.g., Ralph and Smeers (2015) and Kok et al
(2018)).
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The paper is laid out as follows. In the next section we describe determinis-
tic and stochastic social planning models for investment in electricity systems
with stored hydro. In section 3 we describe three approaches to model the
reduction in CO2 emissions. Section 4 describes the calibration of our model
to the New Zealand electricity system, and section 5 presents some selected
results from applying this calibrated optimization model to investigate some
specific questions arising from the New Zealand Government policy of a 100
% renewable electricity system by 2035. Section 6 concludes the paper with a
discussion of results.

2 Social planning model for investment

2.1 Conventional capacity expansion models

Classical electricity capacity planning models Stoft (2002); Joskow (2006) use
a screening curve to rank generation options by their long-run marginal cost
(LRMC), thus finding the best option to serve the production profile for each
additional demand unit. The screening curve shows the annual total cost per
MW capacity plotted against the number of annual operating hours. The total
cost is a combination of fixed and variable cost based on the number of pro-
duction hours in a year. A minimum cost for each capacity factor can be found
by combining the screening curve with the load duration curve (LDC). To sup-
ply the part of the LDC that has higher capacity factor (i.e., running most of
the year), base load is the least cost option. As the number of operating hours
decreases, the plants that are less expensive to build but more costly to run
begin to become more economical. For a small number of hours at the tip of
the duration curve, high variable cost peakers are the most economical. Finally,
there is a small piece of peak load that will not be met. When this happens
electricity price will take the value of lost load (VOLL) if demand is inelastic
or the marginal value of load in the elastic demand case. In a market setting,
the difference between these prices and the short-run marginal cost of peaking
generation provides the necessary rent to cover the fixed cost of the peaking
plant (as well as contributing to cover fixed cost on all the other plants).

In simple cases, the screening curve solution can be found by inspection.
When the LDC is piecewise constant, it is the solution to the linear program

LP: min ψ =
∑

k∈K (Kkxk + Lkzk) + Z
s.t. Z =

∑
b∈BHb

(∑
k∈K Ckyk,b − V (db − rb)

)
,

0 ≤ xk ≤ Xk, k ∈ K,
0 ≤ zk ≤ xk + Uk, k ∈ K,

0 ≤ yk,b ≤ zk, k ∈ K, b ∈ B,
0 ≤ rb ≤ db, b ∈ B,

db ≤
∑

k∈K yk,b + rb, b ∈ B.

where
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• k ∈ K denotes different generating technologies;
• b ∈ B indexes load blocks where Hb denotes the number of hours in block b,
and

∑
b∈BHb gives the number of hours in a year;

• Uk is existing capacity (MW) of technology k;
• the variable xk is additional capacity (MW) in technology k, constrained by
upper bound Xk;

• the variable zk is the new capacity (MW) after investing in technology k;
• variable cost for technology k is defined as Ck ($/MWh)respectively;
• annual capital cost for technology k is defined as Kk ($/MWh p.a.);
• annual maintenance cost for technology k is defined as Lk ($/MWh p.a.);
• the load in load block b is db, and value of lost load is V ($/MWh);
• yk,b denotes the production (MW) of technology k in each hour in load block
b;

• rb denotes the load shed (MW) in each hour in load block b.

2.2 Relation to previous work

Formulations like LP appeared as early as the 1950s Masse and Gibrat (1957),
although the basic formulation has been extended in the past two decades
to include operational constraints, and some supply-side uncertainties such
as plant outages and technological changes were added. Demand distribu-
tions are still represented by load duration curves, or their discretized versions
De Jonghe et al (2012). A number of authors (see, e.g., Bishop and Bull (2008))
have extended LP to include binary capital planning decisions (so zk takes
on discrete values) and planning over multiple years to accommodate growing
demand.

Not surprisingly, models for studying the decarbonization of energy systems
are receiving considerable attention in the literature. Many of these models, for
example Graf and Marcantonini (2017), focus on the intermittency of renew-
ables and the effect of this on backup thermal generation and/or storage. The
investment paths of these models are either prescribed in advance or simu-
lated by estimating net present values of candidate investments at each stage
and then incrementing the model by one time step with selected investments
in place.

Our model is closer in spirit to the classical system planning models such
as MARKAL Fishbone and Abilock (1981) and its modern implementation in
the TIMES system Loulou and Labriet (2008); Loulou (2008). Other similar
planning models are ReEDS Short et al (2011) and GEM Bishop and Bull
(2008). Our model extends these to include uncertainty in operations. In its
simplest form, this gives a two-stage model in which stage one invests in capac-
ity and stage 2 operates this in different states of the world. A multistage
version would invest in capacity over several stages, and in each stage operate
the system subject to the realized uncertainty in operating conditions.

A number of authors have developed models similar to ours. In the United
States, Boffino et al (2019) study the effect of emissions reduction in ERCOT,
the Texas electricity market. Their model includes wind variation, but Texas
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has no hydro reservoirs, so the ERCOT model does not model uncertainty
in energy supply, a criterion that is critical for New Zealand. Similar mod-
els to that in Boffino et al (2019) have emerged for Europe, for example the
EMPIRE model for capacity expansion developed by Skar et al (2014). Simi-
lar to our model, EMPIRE restricts capacities of generators using a stochastic
availability factor (for e.g. wind and run-of-river plant), but their treatment
of hydro storage is more simple than ours, constraining total reservoir hydro
generation for each reservoir by a seasonal energy constraint. In recent work
Domı́nguez et al (2021) examine capacity expansion in Europe using a mul-
tistage stochastic programming model with stochastic dominance constraints
on carbon emissions relative to European Commission benchmarks.

In the following sections we describe our model as it is applied to the
New Zealand electricity system. To our knowledge there are no stochastic
optimization models of the decarbonization of the New Zealand system. Mason
et al (2010, 2013) examine New Zealand historical generation, and estimate
levels of renewable generation capacity needed to replace historical thermal
generation. Their results are calibrated to historical outcomes in the years
2005-2010. Although the study included a very dry year (2008) any future year
with a different (and unknown) hydro inflow sequence and different demand
levels might require more renewable capacity than indicated in Mason et al
(2013). Our model explicitly includes future demand forecasts and stochastic
variation in inflows and wind.

2.3 Stochastic planning model data

In this paper we explore the extent to which uncertainty affects the screening-
curve approach. With uncertain supply from renewable energy, the problem
LP no longer correctly represents the optimal capital planning problem which
now becomes a stochastic linear program. The uncertainty will manifest itself
in various ways that we will endeavour to model in a two-stage stochastic
modeling framework.

Most stochastic capacity expansion models in the literature are designed
to model intermittent wind and solar generation, and determine investments
(including peaking generation capacity and batteries) to deal with this. The
most common approach to modeling these types of generation is to select
several “representative days” from a year to give daily generation scenarios. See
Merrick (2016) and references cited therein for a discussion of this approach.
Pineda and Morales (2018) show how representative time periods longer than
a day can be hierarchically clustered to accommodate inter-day variability.

We have chosen not to use this approach in our models. The inflow variation
in our scenarios occurs over weeks or months. Representing intra-day variation
too faithfully risks biasing the optimization towards a clairvoyant solution over
a longer time scale. Thus we use a model based on load blocks, but extend this
to account for uncertainty at shorter time scales. To deal with intra-day storage
(e.g. from batteries) requires some degree of approximation of operations at
the hourly level. For example we ignore investments to deal with ramping
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constraints as studied in Wu et al (2017) or Khazaei and Powell (2017). These
approximations could potentially be improved by the clever integration of a
representative-days model.

Our approach to modeling uncertainty closely follows that of Kok et al
(2018) and will motivate the different scales using data collected in 2017 for
the New Zealand wholesale electricity market. Since the types of uncertainty
we consider have different effects at distinct time-scales, we need two sets of
parameters to deal separately with the short-term uncertainty in wind and
run-of-river generation, and the medium-term uncertainty in reservoir storage.
We do this by introducing a scenario index ω ∈ Ω that represents a random
future state of the world. In general, each state of the world ω is a vector of
random outcomes. In our model this vector is two dimensional where the first
component ω1 corresponds to a certain type of year, and the second component
ω2 relates to parameter variation in each season t of a year. The effect of these
outcomes on the model is represented for each region i by the set of random
parameters µk,i,b,t(ω), νk,i,t(ω), k ∈ K, b ∈ B.

The parameter µk,i,b,t(ω) for technology k in region i and season t denotes
a proportional reduction in its capacity in load block b and random event ω.
Here µ is used in constraints on the generation (recourse variables) yk,i,b,t(ω)
that hold in each of the scenarios ω:

yk,i,b,t(ω) ≤ µk,i,b,t(ω)zk,i.

Note that zk,i is now indexed by both region i and technology k. Some examples
will help illustrate the model.

If k = 1 is run-of-river hydroelectricity generation then µk,i,b,t(ω1, ω2) =
µ1,i,b,t(ω1), a parameter that depends only on the type of year being experi-
enced that scales down the nominal capacity of the generators in region i to
reflect the inflows that occur in season t of that year. For run-of-river plant
with intra-day flexibility, the capacity factor µ1,i,b,t(ω1) can depend on the
load block, being greater than average in peak times and less in offpeak times,
while averaging out to the value corresponding to the season and type of year.
We represent this by scaling a base value µ̂ for the plant by a block dependent
parameter α, so µ1,i,b,t(ω1) = µ̂i,t(ω1)αi,b,t. Values of α can be estimated from
historical dispatch records.

If k = 2 is wind power, then we might assume that the distribution of wind
in a given load block does not depend on that block. (Of course in some cases
this will not be true, for example a sea breeze might occur in coastal town
in periods close to the evening system peak.). The simplest model assumes
that the wind contributes uniformly to the hours in a load block in a region
i and season t with a constant load factor µ2,i,t(ω1) that might have several
realizations estimated from historical wind generation in each load block. For
small amounts of wind this approach is sufficient, but as wind capacity grows,
the model becomes less realistic. Historical wind generation data contain many
periods with no wind at all, so assuming an average load factor will give
a smoother picture than reality, especially in peak periods when a sudden
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lack of wind requires peaking plant to be dispatched. We approximate this by
including scenarios ω2 with µ2,i,b,t(ω1, ω2) = 0 for the peak load block (b = 1),
having probabilities pt(ω2) estimated from the frequency of historical no-wind
hours in the load block. Observe that pt depends on t, which allows it to vary
with season.

If k = 3 is solar power then we might assume for example that the inso-
lation depends only on the time of day. (Of course in some cases it will
depend on random weather.) Then µ3,i,b,t(ω) = µ3,i,b,t depends only on the
load block, region and season. For a technology like stored hydro, say k = 4,
µ4,i,b,t(ω) = 1, unless ω2 corresponds to an outage event with probability αk,
when µ4,i,b,t(ω1.ω2) = 1−αk, the probability that the station is at full capacity.

The parameter νk,i,t(ω) for technology k denotes a proportional reduction
in its total annual energy production in region i in season t in a year of type
ω. If, as before, k = 4 is generation from stored hydroelectric power then the
event ω could correspond to lower than average reservoir inflows over a year.
In this dry-year event we can still run the reservoir hydro-station turbines at
100 % of their capacity, but not for the whole year. In New Zealand, νk,i,t(ω)
for stored hydro is between 0.4 and 0.6, which is the range of capacity factors
for hydro stations. If k = 5 is thermal plant then ν5,i,t(ω) can model random
fuel stockpile levels, but typically we assume ν5,i,t(ω) = 1. Some values of µ(ω)
and ν(ω) estimated from New Zealand historical data are given in Appendix
B below, and are also available for download from https://www.cs.wisc.edu/
∼ferris/data/100percent

2.4 Hydroelectric storage

We now complete the model by including storage and transmission variables.
Electricity systems with stored hydroelectricity transfer energy from seasons
with high inflows (e.g., from snow melt) to seasons with low inflows. In New
Zealand this generally corresponds to a transfer of energy from a wet summer
to a potentially dry winter. This transfer is profitable not only because winter
supply of energy is smaller than summer, but energy demand in winter tends
to be higher than in summer.

The most realistic models for optimizing this transfer of energy use stochas-
tic dynamic programming to optimize reservoir releases when inflows are
uncertain. For our investment model, such a detailed operational optimization
would be too computationally expensive to include, so we must approximate
an optimal reservoir release policy. Our approximation adds a time index
t = 0, 1, 2, . . . , T −1 to the model, where typically t will denote a season of the
year (so T = 4). We let st denote the water transferred from the end of time
interval t to the beginning of time interval (t+ 1) mod T , where we interpret
t = −1 as the period T − 1 of the previous year. Each time interval t can be
broken up into load blocks b ∈ Bt, each having Hb hours. The total number of
hours in each time interval is then

∑
b∈Bt

Hb.
The hydroelectric storage equations use νk,i,t(ω)

∑
b∈Bt

Hbzki which is a
measure of the total energy available for hydro generation in time interval t

https://www.cs.wisc.edu/~ferris/data/100percent
https://www.cs.wisc.edu/~ferris/data/100percent
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in scenario ω. Here νk,i,t(ω) can be estimated from the total possible energy
Wt(ω) that could be produced from stored hydro in time interval t in scenario
ω. Given a historical year ω we let

Wt(ω) = historical hydro generation in (t, ω) + energy stored at the end of t

− energy stored at the start of t,

and set

νk,i,t(ω) =
Wt(ω)∑

b∈Bt
Hbzk,i

.

In this case, the generation variables are now indexed additionally by t, and
the controlling constraint on hydroelectric storage st has the following form:∑

b∈Bt

Hbyk,i,b,t(ω) ≤ νk,i,t(ω)
∑
b∈Bt

Hbzk,i − si,t + si,t−1 , (1)

along with other physical constraints modeled using s ∈ H. Typically H repre-
sents simple capacity constraints on the storage in each reservoir, but it could
also model limits imposed by environmental constraints (such as minimum
levels). Observe that (1) does not define si,t uniquely and for any i we may
add or subtract a constant from si,t for all t and remain feasible (as long as
s remains in H).

Observe that νk,i,t(ω) can take values larger than 1, if season t in scenario
ω corresponds to high inflows, a large part of which are retained as reservoir
storage at the end of season t. The energy constraint (1) is accompanied by a
generation capacity constraint

yk,i,b,t(ω) ≤ µk,i,b,t(ω)zk,i,

where µk,i,b,t(ω) = 1, so (1) may not be binding if there are very large inflows
and si,t is at its capacity (meaning some inflows will be spilt).

In our model, reservoir storage decisions si,t are chosen in a first stage (for
the end of each season) to make (1) feasible for all ω. The operating policy
will then be required to drive the storage through these points. This could be
overly restrictive, for example, if we had large inflows in season t, in year ω,
when it makes sense to choose si,t−1 to be lower just for this year. On the
other hand allowing si,t−1 to freely anticipate future inflows removes the need
for the variable entirely. We compromise by allowing si,t to vary around a set
point s̄i,t by a limited amount ŝ. Thus (1) becomes∑

b∈Bt

Hbyk,i,b,t(ω) ≤ νk,i,t(ω)
∑
b∈Bt

Hbzk,i − si,t(ω) + si,t−1 (ω),

and
si,t(ω) ≤ s̄i,t + ŝ,
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si,t(ω) ≥ s̄i,t − ŝ.

Here s̄i,t are variables optimized by the model, whereas ŝ is an exogenous
parameter chosen by the user.

2.5 Battery storage

In contrast to seasonal storage, battery storage in our context represents all
devices that can be used to transfer energy between load blocks within a
season. This could encompass e.g., conventional electrical batteries, hydrogen
production and storage, compressed air storage and hydro pumped storage.
These technologies shift load out of peak periods to off-peak periods to reduce
the need for peaking plant or extra transmission capacity. Our experiments
reported in this paper focus on conventional electrical batteries to perform this
task. There are currently no pumped storage facilities in New Zealand.1

Optimizing battery storage has received a lot of attention in the literature.
The paper by Sioshansi et. al. Sioshansi et al (2009) gives a good overview of
the potential benefits of batteries. To determine optimal operating policies for
batteries one should ideally solve an infinite horizon stochastic dynamic pro-
gram Xi et al (2014). With many storage devices (each of which requires a state
variable) this becomes too expensive to include within a capacity expansion
model. Wu et. al. Wu et al (2017) explores the limits of this approach using a
Markov decision process defined on a reduced state space. Other approaches
(that are focused mainly on short-term operations) approximate the optimiza-
tion of operational decisions using e.g., approximate dynamic programming
Cheng and Powell (2016), parameterized decision rules Egging et al (2016), or
heuristics based on opportunity cost estimates Graf and Wozabal (2013). Our
focus in this paper is to develop a model that can explore the effects of invest-
ment in battery storage on seasonal security of energy supply. To do this we
require an approximate battery model that provides some realism, but is sim-
ple enough that it does not yield an intractable investment model. The model
is as follows.

Battery storage is denoted by indices k ∈ S ⊆ K, where installed energy
capacity in region i is denoted zik (MWh), and charging in region i and season
t is effected by power variables gk,i,b,b′,t(ω) where b

′ ̸= b denotes a load block
in which the power charged in b will be discharged. Note that both b and b′

are blocks in Bt, where t is the time period (season). The term∑
b′ ̸=b

gk,i,b,b′,t(ω)

is the extra power needed in load block b that will charge the battery k for later
discharge. Different battery types with the same storage capacity have different
maximum charging rates (and costs). Given battery type k ∈ S1, denote by βk

1The New Zealand Government is currently investigating constructing such a facility in the
South Island, intended primarily for seasonal storage (see section 5.5).
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the maximum rate of charge per MWh of storage capacity. Thus installing twice
as many batteries doubles the charging rate. This gives a charging constraint∑

b′ ̸=b

gk,i,b,b′,t(ω) ≤ βkzk,i, b ∈ Bt, k ∈ S1,

where zk,i( MWh) is the storage capacity choice for battery type k in region
i, and t is the time period (season).

Let the number of days in each time period t be denoted Dt. We assume
that each day in a season has the same number of hours in each load block,
and the battery operates in the same way on each day. Then Hb

Dt
is the number

of hours in load block b in any given day in time period t. This means that
that total amount that the battery is charged in any block b ∈ Bt during a
day cycle is

Hb

Dt

∑
b′ ̸=b

gk,i,b,b′,t(ω).

In the worst case, the battery will need to be charged in contiguous hours (e.g.
overnight) to be discharged in later peak hours. This assumption means that
the total amount that a battery will be charged in a day will involve adding
the charge over all blocks b where

∑
b′ ̸=b gk,i,b,b′,t(ω) > 0. The battery energy

capacity zik (MWh) then restricts the choice of g, with the constraint

∑
b

Hb

Dt

∑
b′ ̸=b

gk,i,b,b′,t(ω) ≤ zk,i, k ∈ S.

The amount of energy stored in the battery for discharge in block b on
a given day will be

∑
b′ ̸=b

Hb′
Dt
gk,i,b′,b,t(ω). Upon discharge this will yield the

energy

ηk
∑
b′ ̸=b

Hb′

Dt
gk,i,b′,b,t(ω)

where ηk is the round trip efficiency of the battery. This energy will be spread
over the hours in block b on the given day. The power contribution (MW) in
each of these hours is then

ηk
∑

b′ ̸=b
Hb′
Dt
gk,i,b′,b,t(ω)(

Hb

Dt

)
which simplifies to

ηk
∑
b′ ̸=b

Hb′

Hb
gk,i,b′,b,t(ω).
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2.6 Transmission constraints

The final part of the model defines constraints on the electricity transmission.
Transmission from region i to region j in load block b is denoted by fi,j,b,t(ω),
and the net flow arriving at region i from other regions is∑

j

(
(1− αj,i

2
)fj,i,b,t(ω)− (1 +

αi,j

2
)fi,j,b,t(ω)

)
(2)

where αi,j is the proportional loss in energy incurred by transmission in the
line between i and j. The transmission flows can be restricted by additional
constraints f ∈ F that model Kirchhoff’s voltage constraints from DC-load
flow, for example. In the experiments described below we assume a radial
transmission network, so F only imposes capacity constraints on inter-regional
flows.

The formula (2) gives a total net supply of power in load block b at region
i defined by

qi,b,t(ω) =
∑

k∈Ki
yk,i,b,t(ω)

+
∑

j

(
(1− αj,i

2 )fj,i,b,t(ω)− (1 +
αi,j

2 )fi,j,b,t(ω)
)

−
∑

k∈Ki

∑
b′ ̸=b gk,i,b,b′,t(ω)

+
∑

k∈Ki
ηk
∑

b′ ̸=b

gk,i,b′,b,t(ω)Hb′

Hb
,

where Ki ⊆ K are the technologies available at region i. This constraint
assumes that all destination blocks b′ occur in the same day as b. This won’t
necessarily be the case. Some load blocks (representing annual system peaks)
have only a few hours in them. One could restrict b′ to load blocks that are not
too far from b, so shifted load can be assumed to come from the same block.
Note that other data such as Kk, Lk, Ck, µk, νk and Dt can be extended to
be location dependent in a straightforward way.

2.7 Demand response

One mechanism for reducing load in peak times is to shift load. With appropri-
ate incentives, consumers can be assumed to not purchase electricity in a peak
period for a given activity by deferring it to a period with lower total demand.
Typically these shifts of demand are within a day, where a consumer chooses
to do their laundry for example in off-peak periods where prices are lower. Our
model of batteries could be used to represent this form of demand shifting.

A different issue arises when the system faces an energy constraint. In
the New Zealand case study in Section 4, this corresponds to a dry winter in
which hydro reservoir inflows are low. To deal with such an uncertain energy
shortage, it is not enough to shift load out of peak periods, electricity must
substituted or foregone. With strongly interconnected systems, substitutes for
local electricity can come from imported power. With isolated systems like
New Zealand the substitution must come from industrial users of electricity
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who reduce production in New Zealand and increase it in other countries where
energy supplies are (temporarily) more plentiful.

We model industrial load reduction over a protracted period in each loca-
tion i using variables yk,i,b,t(ω), where k ∈ Ii indicates a particular type of
industrial entity in location i that can shut down to save energy. This incurs
an operating loss for the industry of Ckyk,i,b,t(ω). The maximum amount that
load can be reduced at this cost is Uk,i. The model is flexible enough to pro-
vide more of this option (possibly) with fixed costs Kk(xk,i) + Lk(zk,i), and
increasing operating losses with tranches of increasing marginal cost Ck.

This modeling feature is not intended to capture peak shaving (which is
accomplished by the battery model). We therefore add constraints to preclude
shutdowns cycling over a short period (e.g. between peak and off-peak periods
within a day). These constraints take the form

yk,i,b,t(ω) = ȳk,i,t(ω), b ∈ Bt,

ȳk,i,t(ω) ≤ zk,i.

This means that in a feasible solution, every load block in a season t will have
the same load reduction. If total shutdown of a plant is required then the
second constraint could be modeled by variables δ ∈ {0, 1} with

ȳk,i,t(ω) ≤ Uk,iδ.

Alternatively we can interpret a fractional value of δ as a shut over a fraction
of a season which reduces load in all load blocks uniformly.

The constraints presented here assume that the industrial load can
anticipate the uncertain outcome ω. With no anticipation we would obtain

yk,i,b,t(ω) = ȳk,i,t, ω ∈ Ω, b ∈ Bt,

ȳk,i,t(ω) ≤ zk,i,

which is arguably too restrictive as it would require plants to plan to shut
in advance, and go through with this even if electricity supply turned out
to be plentiful. A practical compromise selects uncertain outcomes that can
reasonably be anticipated when they start to take effect (e.g a dry winter) and
relaxes the nonanticipativity constraints over these dimensions only. Thus if
Ω = Ω1 × Ω2, where ω1 ∈ Ω1 denotes a year climate outcome, and ω2 ∈ Ω2

denotes other random outcomes that cannot be anticipated then we obtain

yk,i,b,t(ω1, ω2) = ȳk,i,t(ω1), (ω1, ω2) ∈ Ω, b ∈ Bt,

ȳk,i,t(ω1) ≤ zk,i.

2.8 Stochastic planning model

We now present a succinct formulation of our stochastic social planning model.
It helps to recall that ω ∈ Ω indexes scenario, i ∈ I indexes location, k ∈ Ki
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indexes technology at location i, t ∈ [0, T ] indexes season, and b, b′ ∈ Bt index
(season dependent) load blocks. (For reference, a full list of parameters and
decision variables for this model is provided in Appendix A.) We seek a solution
that minimizes expected capital and operating costs.

P: min E(ψ)
s.t. ψ(ω) =

∑
i

∑
k∈Ki

(Kkxk,i + Lkzk,i)
+
∑

i Zi(ω)
Zi(ω) =

∑
t∈[0,T ]

∑
b∈Bt

Hb

∑
k∈Ki

Ckyk,i,b,t(ω)

−V
∑

t∈[0,T ]

∑
b∈Bt

Hb (di,b,t(ω)− ri,b,t(ω)) ,

xk,i ≤ Xk,i,
zk,i ≤ xk,i + Uk,i,

yk,i,b,t(ω) ≤ zk,i,
yk,i,b,t(ω) ≤ µk,i,b,t(ω)zk,i,∑

b∈Bt
Hbyk,i,b,t(ω) ≤ νk,i,t(ω)

∑
b∈Bt

Hbzk,i − si,t + si,t−1,
ri,b,t(ω) ≤ di,b,t(ω),
qi,b,t(ω) =

∑
k∈Ki

yk,i,b,t(ω)

+
∑

j

(
(1− αj,i

2 )fj,i,b,t(ω)− (1 +
αi,j

2 )fi,j,b,t(ω)
)

−
∑

k∈Ki

∑
b′ ̸=b gk,i,b,b′,t(ω)

+
∑

k∈Ki
ηk
∑

b′ ̸=b

gk,i,b′,b,t(ω)Hb′

Hb
,

di,b,t(ω) ≤ qi,b,t(ω) + ri,b,t(ω),∑
b∈Bt

Hb

∑
b′ ̸=b gk,i,b,b′,t(ω) ≤ zk,iDt,∑
b′ ̸=b gk,i,b,b′,t(ω) ≤ βkzk,i,

f ∈ F ,
s ∈ H.

The first-stage decisions in this model are the capacity decisions x and z,
and the decisions si,t for each season t that determine how much energy will
be transferred by storage at i from season t to season (t+ 1) mod T .

As described above, using different choices of the data µ and ν, we can gen-
erate a set of models that will add uncertainty in wind and run-of-river hydro
generation. The capital plans that result will be different. Further changes in
data lead to another class of models that add uncertainty in stored hydro gen-
eration, but still seek a solution that minimizes expected capital and operating
costs. The capital plans that result will be different again.

3 Constraints on renewables

All of the models of the previous section can be used to study the effect of
adding a constraint on non-renewable generation. Four forms of this constraint
will be considered. The first three of these non-renewable constraints hold in
expectation or in every outcome ω, while the fourth is a chance-constraint
formulation.
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3.1 Capacity constraint

This is a first stage constraint on total non-renewable (coal, gas and diesel)
capacity: ∑

i

∑
k∈Ni

zk,i ≤ E, (3)

where Ni represents the set of non-renewable generators at location i. It is
independent of scenarios ω. An alternative form of (3) might impose separate
constraints on individual non-renewable technologies to discriminate between
coal and gas for example. A constraint that is often discussed sets E = 0
in (3), to enforce the closure of all non-renewable generation capacity. Our
experiments in section 5 are focused on the costs of imposing such a constraint.

Instead of imposing the constraint (3) explicitly in the optimization prob-
lem, we can introduce a Lagrange multiplier σ for the constraint and move
this into the objective ψ(ω):

ψ(ω) =
∑
i

(∑
k∈Ki

(Kk(xk,i) + Lk(zk,i)) +
∑
k∈Ni

σzk,i + Zi(ω)

)
− σE.

The resulting effect of the Lagrangian form of the constraint is to simply
replace the Lk(zk,i) term by Lk(zk,i)+σzk,i for each k ∈ Ni. Thus the capacity
constraint essentially amounts to an increase in maintenance cost in the non-
renewable technologies. Clearly σ and E are intimately related and we can
exogenously parameterize the optimization using either σ or E.

3.2 Generation constraint

The second renewable constraint is imposed on second stage decisions and
limits expected non-renewable generation:

E[
∑

t∈[0,T ]

∑
b∈Bt

Hb

∑
i

∑
k∈Ni

yk,i,b,t(ω)] ≤ E. (4)

A more restrictive almost sure constraint is to impose the regulation in each
scenario ω: ∑

t∈[0,T ]

∑
b∈Bt

Hb

∑
i

∑
k∈Ni

yk,i,b,t(ω) ≤ E, ∀ω.

Introducing Lagrange multipliers for either of these constraints leads to an
adjusted cost optimization parameterized by those multipliers. In the almost
sure form of the constraint, for example, the modification to Zi is as follows:

Zi(ω) =
∑

t∈[0,T ]

∑
b∈Bt

Hb

(∑
k∈Ki

Ckyk,i,b,t(ω) +
∑

k∈Ni
σ(ω)yk,i,b,t(ω)

)
−V
∑

t∈[0,T ]

∑
b∈Bt

Hb (di,b,t(ω)− ri,b,t(ω))

−σ(ω)E,
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amounting essentially to a scenario and season increase in variable operating
cost for non-renewables.

3.3 Emission constraint

The third constraint is a limit E on total emissions from all generation that
emits CO2 (including geothermal and CCS generation). Again, this can be
expressed in expectation form:

E[
∑

t∈[0,T ]

∑
b∈Bt

Hb

∑
i

∑
k∈Ni

ekyk,i,b,t(ω)] ≤ E, (5)

or in every scenario ω:∑
t∈[0,T ]

∑
b∈Bt

Hb

∑
i

∑
k∈Ni

ekyk,i,b,t(ω) ≤ E, ∀ω.

Here ek denotes an emissions factor for output from plant of type k. Although
the data H, e and E could vary by location i and/or season t with minor
changes to this constraint, we assume in all our experiments that this is not
the case.

It seems unnatural to impose an emission constraint in expectation, since
one would not want to admit high emissions in any future state of the world.
One should bear in mind, however, that the scenarios (ω1, ω2) represent poten-
tial weather states for a target year far in the future. In our experiments
described in Section 5, ω1 indexes 13 historical inflow years, each of which
is assumed to occur with equal probability, and we compute a steady-state
operating policy that assumes the target year demand repeats with random
outcome ω1 in each repetition. An expectation will account for the accumu-
lated emissions from applying this steady-state operating policy over several
years, which is the statistic that ultimately affects atmospheric CO2 levels,
rather than e.g. the worst emission outcome in any of these years. Of course
this estimate of accumulated emissions involves some error that one might want
to take account of in the model to be safe, but this would involve a different
form of constraint from an almost-sure one.

The constraint E on emissions from electricity generation can be thought
of as a regulatory intervention. In practice these emissions will be traded off
against emissions in the rest of the economy (or the world if carbon credits are
traded internationally). The shadow price σ thus represents a carbon price,
which could be imposed on the electricity sector, or emerge from a general equi-
librium model with many sectors apart from electricity. It can be implemented
via a modification to Zi similar to that given above:

Zi(ω) =
∑

t∈[0,T ]

∑
b∈Bt

Hb

(∑
k∈Ki

Ckyk,i,b,t(ω) +
∑

k∈Ni
σ(ω)ekyk,i,b,t(ω)

)
−V
∑

t∈[0,T ]

∑
b∈Bt

Hb (di,b,t(ω)− ri,b,t(ω))

−σ(ω)E.
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3.4 Chance-constraint on emissions

We denote the tonnes of CO2 emissions in scenario ω by J(ω). We can impose
a chance constraint on J(ω) of the form

P(J(ω) > 0) ≤ β.

Thus if we were to choose β = 0.5, and ω denotes potential inflow scenarios
(possibly sampled from history), then this constraint would restrict annual
emissions to zero in at least 50% of these scenarios. We model this as a mixed
integer program using a “big-M” constraint by simply adding the following
constraints to the stochastic planning model above:

J(ω) =
∑

t∈[0,T ]

∑
b∈Bt

Hb

∑
i

∑
k∈Ni

ekyk,i,b,t(ω)

J(ω) ≤ Mδ(ω)∑
ω P(ω)δ(ω) ≤ β,

δ(ω) ∈ {0, 1}.

In our experiments we used ω ∈ Ω1 instead of the full generality of ω ∈ Ω. We
do not derive a Lagrangian form of this problem since the primal problem now
involves binary variables.

As we show in the case study explored in the next section of the paper,
each form of emission constraint results in a different outcome, at least when
emissions are not removed entirely from electricity generation when one would
expect average and almost-sure outcomes to coincide. These differences in
outcomes help illuminate what choice of constraint is appropriate.

4 New Zealand Case Study

The New Zealand Labour Party and Green Party of Aotearoa New Zealand
Confidence and Supply Agreement of 2017 (as reproduced in New Zealand
ICCC Terms of Reference (2019)) states that the “Government will: Request
the Climate Commission to plan the transition to 100 % renewable electricity
by 2035 (which includes geothermal) in a normal hydrological year”. The first
versions of this agreement omitted the qualifying clause “in a normal hydro-
logical year”, and there was strong advocacy from environmentalists to plan to
shut down all non-renewable electricity generation by 2035. In what follows we
have interpreted “100 % renewable electricity by 2035 in a normal hydrologi-
cal year”as a chance constraint (allowing non-zero emissions in a proportion of
non-normal years). We compare this formulation of the constraint with others
that either limit emissions explicitly or shut down capacity.

The social planning model P has been implemented using New Zealand
data as part of a project seeking to estimate the costs of meeting these goals.
The data set for the experiment is provided in the online companion to the
paper. Selected parameter values are displayed in tables in this section. We
also refer the reader to the tables (B1-B8) in Appendix B to the paper, and to
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the online repository at Data Repository for ‘Renewable electricity capacity
planning with uncertainty at multiple scales’ (2022). We give a brief summary
here of how the parameters of the model were estimated.

The model has three regions (i =SI, HAY, NI) representing the South
Island, lower North Island and Upper North Island respectively. These three
regions are joined by nominal transmission lines having capacity 1200MW for
SI-HAY and 1000 MW for HAY-NI. We model four seasons (t = 0, 1, 2, 3)
representing the calendar months January-March, April-June, July-September,
October-November.

Demand data for the model at the three locations are estimated from half-
hourly metered load for every grid exit point in the national transmission
system. These data are archived at Electricity Market Information System
(2019). The data are adjusted for wind and photovoltaic generation that has
not been recorded, and aggregated into regional demand for each half-hour
period in 2017. Wind generation data from each region for years 2005-2017
is similarly aggregated. The total metered demand over the three regions is
then sorted from maximum to minimum to give a load-duration curve, and
the wind generation data in each year is sorted to give the same order of
trading periods as the load. This enables us to identify peak periods in which
wind generation is absent and estimate the probability of no wind in a peak
load block. From the demand and wind data we create 10 load blocks for each
season. The number of hours in each load block is shown in Table B1.

For each load block we estimate a level of demand for 2035 by apply-
ing a load growth factor to the residential and commercial components that
are expected to increase with population and economic growth. (A large alu-
minium smelter is excluded from these growth estimates.) The level of demand
in each block in 2035 is then increased by projected increases in load from
electric vehicles (5.7 TWh above 2017 levels) and industrial electrification (5.5
TWh above 2017 levels), based on the forecasts in (New Zealand ICCC, 2019,
p. 41). These increases are allocated to regions proportional to population and
uniformly to load blocks2. The result is a set of tables of projected load (MW)
in each block in each region in each season in 2035 with load blocks shown in
Table B2.

As discussed in section 2.3 the scenarios in our model are pairs (ω1, ω2),
where ω1 indexes hydrological data from a historical year chosen with equal
probability from {2005, 2006, . . ., 2017}, and ω2 ∈ {0, 1} indexes outage
events (such as having no wind in peak demand periods). For example, when
k represents run-of-river generation, the parameters µk,i,b,t are derived from
µ̂i,t(ω1), ω1 = 2005, 2006, . . . , 2017 which are given in Table B3 for i = SI and
i = NI. Similarly, when k represents hydro reservoir generation the parame-
ters νk,i,t(ω1), ω1 = 2005, 2006, . . . , 2017 are given in Table B5 for i = SI and
i = NI.

2Although some factor accounting for overnight charging might be applied here we choose to
keep this uniform.
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On the other hand, when k represents wind generation the parameters
µk,i,b,t(ω2) are given in Table B7 for ω2 = 1. The values for µk,i,b,t(ω2) when
ω2 = 0 are identical except for column b1 which contains 0’s. The probability
of observing ω2 = 0 in season t is estimated from historical wind data. When
k represents photovoltaic solar generation the parameters µk,i,b,t are assumed
to be deterministic and are given in Table B6.

The existing capacities of generation technologies in each region were
sourced from the Electricity Authority generation database available at Elec-
tricity Market Information System (2019). For 2035 we assumed that the
coal/gas fired Rankine units at Huntly would be decommissioned as would
the Stratford combined cycle plant. This gives a mix of existing capacities as
shown in Table 1. Each run of the model proposes limits on new capacity to
build of each technology. In our example runs we have chosen possible capacity
additions as also shown in Table 1.

Table 1: Capacity of existing plant (MW) that will be available in 2035 and
potential electricity capacity increases (MW) by technology and region.

Existing Cap. SI HAY NI

CCGT 0.0 0.0 403.0
CCS 0.0 0.0 0.0
DIESEL 0.0 0.0 155.0
DR 50.0 0.0 0.0
GEOT 0.0 0.0 892.7
HYDROr 840.0 0.0 687.0
HYDROs 2573.0 0.0 1051.0
OCGT 0.0 0.0 350.8
SLOWBATT 0.0 0.0 0.0
MEDBATT 0.0 0.0 0.0
FASTBATT 0.0 0.0 0.0
SOLAR 0.0 0.0 0.0
WIND 0.0 143.0 232.2

Pot. Increase SI HAY NI

CCGT 0.0 0.0 2000.0
CCS 0.0 0.0 2000.0
DIESEL 0.0 0.0 0.0
DR 0.0 0.0 0.0
GEOT 0.0 0.0 542.0
HYDROr 130.5 0.0 0.0
HYDROs 0.0 0.0 0.0
OCGT 0.0 0.0 920.0
SLOWBATT 500.0 500.0 500.0
MEDBATT 500.0 500.0 500.0
FASTBATT 500.0 500.0 500.0
SOLAR 1000.0 1000.0 1000.0
WIND 5000.0 5000.0 5000.0
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New capacity incurs an annualized fixed capital cost, and new and existing
capacity incurs an annual operations and maintenance cost. The annualized
capital cost is a capital recovery factor per MW of capacity that gives the before
tax annual revenue that would be required to give an internal rate of return of
8 % (after depreciation and tax) on the capital. Estimates of capital costs for
thermal plant have been obtained from US Energy Information Administration
(EIA) (2019), and costs for CCGT with Carbon Capture and Storage (CCS)
were sourced from Rubin and Zhai (2012).

The values of Kk, Ck, and Lk assumed in our models are shown in Table
2. All costs are measured in 2018 New Zealand dollars.

Table 2: Capital costs, variable costs and maintenance costs

Costs Kk (NZD/MW/Yr) Ck (NZD/MWh) Lk (NZD/MW/Yr)

CCGT 138000 70 45000
CCS 242717 75 45000
DIESEL 110400 232 15000
DR 0 1000 0
GEOT 430000 1 150000
HYDROr 430000 6 0
HYDROs 516000 6 0
OCGT 110400 93 15000
SLOWBATT 48364 0 5000
MEDBATT 163879 0 6000
FASTBATT 314788 0 7000
SOLAR 110400 2 35000
WIND 178000 12 20000

5 Computational results

This section of the paper describes the results of some computational exper-
iments with the social planning model under a number of assumptions.
Experiment 1 studies the effect of thermal capacity reduction on average CO2

emissions. Experiment 2 uses “business-as usual” forecasts of 2035 electric-
ity demand and studies the effect on total investment and expected operating
cost of tightening the constraints either on non-renewable generation or on
average CO2 emissions. Experiment 3 assumes more electricity demand in
2035 (due to electric vehicle growth and industrial electrification) and studies
the effect on expected system cost of tightening constraints either on non-
renewable generation or on average CO2 emissions. Experiment 4 compares
different probabilistic versions of the constraint on CO2 emissions.

5.1 Experiment 1: Emission Reduction Paradox

The first experiment we carried out tested a counterintuitive conjecture that
decreasing the capacity of thermal plant could increase CO2 emissions. This
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effect was first noticed in a more detailed model developed by Fulton (2018),
solved using a version of the SDDP algorithm. In our model we removed
the CO2 reduction constraints and amended Table 1 so that each region had
1200MW of CCGT, no OCGT or DIESEL, and no changes in generation
capacity were allowed. The value of ŝ was set to 0 for simplicity. This mix of
generation gave annual average CO2 emissions of 4409 kt. We then reduced the
CCGT capacity to 700MW in each region, while all other capacities remained
unchanged. The model then gave annual average CO2 emissions of 4428 kt.

The average energy generated by geothermal plant is the same in each
run, so the difference in average emissions results from CCGT generation. The
average energy generated by CCGT plant in each season in these two cases is
shown in Table 3. One can see that the CCGT generation in the 700MW case

Table 3: Average CCGT generation in season t

GWh 0 1 2 3 Total

1200 MW 2353 2693 2388 2419 9853
700 MW 2673 2836 2018 2376 9903

is higher overall, and is higher on average in the first half of the year.
The optimal values of the first-stage storage levels s̄i,t are not unique. It

is easy to see that one can add or subtract a constant from all of them and
remain feasible as long as the values remain between their bounds. To make a
comparison, we have normalized the results so that both runs have the same
storage at the end of period 2. The resulting figures are shown in Table 4a (for
1200 MW) and Table 4b (for 700 MW).

Table 4: Reservoir storage at the end of season t
(a) CCGT capacity 1200MW

GWh 0 1 2 3

SI 1809 1526 0 943
NI 291 20 374 761
Total 2136 1526 374 1683

(b) CCGT capacity 700MW

GWh 0 1 2 3

SI 1736 1526 0 957
NI 590 390 374 691
Total 2326 1916 374 1648

Observe that with lower thermal capacity (Table 4b) the reservoir levels at
the end of period 3 are about the same but the model gives a higher average
reservoir volume 2326 GWh at the end of period 0 than in the higher thermal
capacity case (Table 4a with 2136 GWh). This increase in reservoir levels
requires additional thermal generation to attain the higher storage level, which
is put in place as a hedge against the chance of a dry winter. The additional
storage hedge is not needed when 1200MW of CCGT capacity is available to
be used in period 1 case of low inflows.
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Clearly this conclusion requires the use of the stochastic model to provide
value for hedging, and using the water levels as a first stage variable enables
the planning model to capture the observed effect. More generation (from less
thermal capacity) leads to higher emissions. This effect, which can be observed
over a wide range of data values, is examined in more detail in Fulton (2018).

In most electricity systems, closing down the heaviest emitting plant will
decrease emissions, and so the closure of coal plants receives strong support in
climate policy. In a hydro-dominated electricity system with uncertain inflows
and high costs of shortage (like New Zealand’s), more care must be taken in
assessing such policy decisions.

5.2 Experiment 2: Capacity versus Generation

In the second experiment, we investigated the effect of varying the level of
the renewable constraints on the model. The alternative formulations of these
constraints ((3), (4), and (5)) impose bounds E on non-renewable capacity,
non-renewable energy and average CO2 emissions respectively. The constraints
are made progressively more restrictive by a parameter θ that increases from 0
to 1. The right-hand side E of each constraint ((3), (4), and (5)) is replaced by
(1−θ)Ē, where Ē denotes the 2017 level of the appropriate quantity (including
predetermined closures in the case of (3).

It is important to be clear what θ measures, especially when the constraint
(5) is imposed. In this case the right-hand side E of constraint (5) is replaced
by (1 − θ)Ē, where we Ē equals the 2017 level of emissions from electricity
generation (three million tonnes). Here a value of θ = 0.5 does not mean a 50
% renewable electricity system, but a system that emits on average 50 % of the
electricity CO2 emissions of 2017 (which comes from about 15 % of generated
electricity in 2017). So, in terms of average emission levels, a given value of θ
amounts to an (85 + 15θ)-%-renewable electricity system.

In Figures 1a and 1b, θ is shown on the horizontal axis, and capacity
constraint (3) from Section 3.1 is depicted by the “NR capacity redn” bars,
the generation constraint (4) from Section 3.2 is depicted by the “NR energy
redn” bars, and the emission constraint (5) from Section 3.3 is depicted by the
“CO2 redn” bars. The y-axis for Figure 1a is kt of carbon and in Figure 1b
it depicts the annual cost in (2018)$B NZ. Since (renewable) geothermal and
CCS emit some CO2 (so renewable is not the same as no carbon emission),
Figure 1a shows that a value of θ = 1 yields modest reductions in actual
CO2 emissions if we impose only the capacity or energy reduction constraints
(3) or (4). When θ represents percentage reductions in actual CO2 emissions
(including those from geothermal and CCS) the green bars in Figure 1b show
that the cost increases are fairly modest (27%) up to θ = 0.95, but are around
45 % for zero carbon emissions (θ = 1).

In summary, Experiment 2 shows that outcomes from reducing “non-
renewable” capacity (blue bars) is different from and more expensive than
reducing “non-renewable” energy (orange bars) unless these are both set to
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(a) Carbon emissions (Mt) (b) Costs (NZ$ M)

Fig. 1: Increasing θ on constraints

(a) Carbon emissions (Mt) (b) Costs (NZ$ M)

Fig. 2: Increasing θ on constraints (increased load)

zero (when θ = 1). Focusing investment on emission reduction (green) even-
tually gives zero emissions (when θ = 1) but costs significantly more as
geothermal generation and CCS are precluded from the mix at this point.

5.3 Experiment 3: Increased Electricity Demand

The next experiment we carried out compared the expected cost of meeting
targets on nonrenewable capacity as compared with meeting targets on non-
renewable energy, but with increased forecast electricity load (see Table B8 in
Appendix B) arising from electric vehicles and conversion of industrial pro-
cess heat from gas and coal to electricity. The increased demand for electricity
amplifies the effects seen in Experiment 2.

The bars denoted “CO2 redn” in Figure 2 show that the cost of actually
reaching zero CO2 emissions (without geothermal or CCS) increases substan-
tially as we approach the limit. For completeness, in the emission constraint
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case shown in Figure 3, we split the costs out into four bars depicting the
investment cost, the cost of maintenance, the expected operating cost, and the
expected cost of lost load.

Fig. 3: Increasing θ on constraints (increased load)

The mix of technologies used in the solutions (for the increased load case)
is shown in Figure 4. The capacity and energy reduction mixes shown in Figure
4a and Figure 4b are almost indistinguishable, although Figure 4b does retain
more non-renewable capacity (CCGT and OCGT) at around 75-90% reduction
in non-renewable energy. At this level of energy reduction some non-renewable
plants are kept open (violating the non-renewable capacity constraint) but
used only sparingly to provide hydro firming in dry years, so meeting the
non-renewable energy constraint.

The mix for emission reduction is more diverse as the level of emissions
becomes small. Geothermal is removed (since it is a CO2 emitter) and replaced
by large amounts of wind coupled with some solar and battery capacity. We
have modeled three different forms of battery named SLOWBATTERY, MED-
BATTERY and FASTBATTERY with βk equal to 0.1617, 0.8846, 2.7660
MW/MWh respectively, and values of Kk and Lk as shown in Table 2. It is
interesting to note that CCS comes into the mix when θ = 0.99, but cannot
be present at the 100 % level.

As mentioned earlier in the paper, we are able to replace the parametric
constraint on emissions by a carbon tax. The figures 4c and 4d could be made
identical by suitable choices for the carbon tax, but we give a representative
set of values only in Figure 4d. Note that a value of the carbon tax of around
$400 per tonne leads to similar capacity mix (Figure 4d) as the θ = 0.90 system
(Figure 4c).

The CO2 emissions from these two solutions are shown in Figure 5. The
choice of $400 tax gives CO2 emissions (see Figure 5b) of about 500,000 t,
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(a) Plant mix (MW) with capacity constraint (b) Plant mix (MW) with energy constraint

(c) Plant mix (MW) with emission constraint (d) Plant mix (MW) with carbon tax (NZ$/t)

Fig. 4: Mix of technologies (increased load)

(a) Emissions (Mt) with constraint (b) Emissions (Mt) with carbon tax (NZ$/t)

Fig. 5: CO2 emissions (increased load)

from CCGT, OCGT and geothermal plant. The choice of θ = 0.90 gives CO2

emissions (see Figure 5a) of about 250,000 t, from CCGT, OCGT and geother-
mal plant. The $400 tax is not sufficient to make these non-renewable plant
reduce output enough to get down to 250,000 t of CO2 emissions. As shown
by the penultimate bar in Figure 5b, a tax closer to $800 is needed to make
these reductions.
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5.4 Experiment 4: Forms of Emission Constraint

In this experiment, we investigate the effect of using different probabilistic ver-
sions of the constraints on non-renewable capacity and generation as described
in Section 3.

5.4.1 Almost sure constraint

Figure 6 shows the results for meeting the constraints in the almost-sure sense.
We compare these with the corresponding graphs for expectation constraints
shown in Figure 2. Since capacity expansion is a first-stage decision, the “NR
capacity redn” outcomes are the same as those shown in Figure 2 for constrain-
ing expected emissions. Significant differences between Figure 2 and Figure 6
for the “NR energy redn” and “CO2 redn” outcomes are observed only at rel-
atively low levels of CO2 reduction. The “NR energy redn” bar reduces height
significantly for the 0.0 average reduction case. In Figure 2 this bar mea-
sures average non-renewable energy production when this is constrained to be
below 2017 levels, whereas the orange bar in Figure 6 measures average non-
renewable energy generation when this generation is constrained to be below
2017 levels in every scenario. The latter is more restrictive and will give a lower
average. In fact, there is a single year, 2005, in which the emissions are signif-
icantly higher than all the others in the average case, but is compensated for
by reduced emissions in other years. Similar (albeit less dramatic) differences
are seen for the 0.5 average reduction case, and then these differences disap-
pear as the emissions constraints become stricter, and non-renewable energy
reductions in every scenario become necessary. When the average reduction
factor is 1.0, the constraints are identical and the outcomes shown in Figure 2
and Figure 6 are the same.

(a) Carbon emissions (Mt) (b) Costs (NZ$ M)

Fig. 6: Increasing θ on constraints, almost sure case (increased load)
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5.4.2 Chance constraint

The next results compute the cost of meeting a chance constraint (with
original and increased load data). The chance constraint requires that the
system has zero CO2 emissions in 7 out of the 13 scenarios indexed by
{2005, 2006, . . . , 2017}. Our goal here is to study the effects of a constraint
that relaxes constraints on emissions in years with abnormal inflows.

The optimal capacity mix for the original load data is shown in Figure 7a
and the optimal capacity mix for the increased load data is shown in Figure
7b. The mix of capacities in Figure 7b is commensurate with the mix shown
in Figure 4c which is optimal for a renewable level of 100 %.

Figure 8a and Figure 8b show the realized reductions in CO2 in each sce-
nario in the two load cases. As one would expect, the scenarios in which the
zero CO2 requirement can be violated include the years 2005, 2008 and 2012,
all of which had “dry winters” with low reservoir inflows.

Comparing Figure 8a and Figure 8b it is surprising that the CO2 emissions
from the optimal capacity mix decrease as the load increases. This occurs
because the increased load case requires increased investment in renewable
generation (wind, solar and batteries: see Figure 7a and Figure 7b) in order to
have zero emissions in the seven scenarios (2006, 2009, 2010, 2011, 2015, 2016,
2017) as shown in Figure 8b. Once built, renewable technologies have zero
short-run marginal cost, so they are cheaper than thermal plant and so are
dispatched ahead of thermal plant. This leads to a reduction in CO2 emissions
in every scenario even if emissions are constrained in only 7 of these.

Figure 8a and Figure 8b show the realized reductions in CO2 in each sce-
nario from the chance-constrained capacity choices shown in Figure 7a and
Figure 7b. As expected, there are nonzero CO2 emissions in 6 out of the 13
scenarios, and although the system is 100 % renewable in the other 7 scenar-
ios, the average level of CO2 emissions in the original load case is about 0.1
Mt, while in the increased load case it is about 0.028 Mt, respectively a 97
% or 99 % reduction in CO2 emissions from 3 million tonnes in 2017. The
expected cost of the chance-constrained solution with the original load is $1.64
B NZ, while the cost for the chance-constrained solution with increased load
is $ 2.75 B NZ. One can compare these with estimates of costs for “CO2 redn”
in Figure 1b and Figure 2b which are $1.5 B NZ and $2.0 B NZ respectively.
As one might expect, the cost of average emission reductions that result from
solving a model with a literal interpretation of “100% renewable in a normal
hydrological year” can be more than the optimal cost from a model that has
an explicit constraint on average emissions.

5.5 Experiment 5

In the final experiment we examine a mooted proposal to create a pumped
storage facility (Lake Onslow) in the South Island of New Zealand to deal with
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(a) Original load (b) Increased load

Fig. 7: Capacity mix for model with a chance-constraint on zero emissions in
50% of years

(a) Original load, emissions in each scenario (b) Increased load, emissions in each scenario

Fig. 8: Emissions for model with a chance-constraint on zero emissions in 50%
of years

security of energy supply during “dry winters”.3 Like the rest of the system
our model of this proposal is approximate but gives some idea of the expected
benefits that such a facility would provide.

To model pumped storage in region i, the stochastic planning model P is
altered to include non-negative variables ui,b,t(ω) and vi,b,t(ω) that represent
flows (MW) of energy added to pumped storage and consumed from pumped
storage in region i, season t, load block b and scenario ω. These flows are
constrained by the capacities chosen for the installed pumps and generators

ui,b,t(ω) ≤ xui ,

vi,b,t(ω) ≤ xvi ,
and by the water available for pumping (which we assume is unlimited).

The demand balance constraint in P becomes

di,b,t(ω) ≤ qi,b,t(ω) + ri,b,t(ω)− ui,b,t(ω) + vi,b,t(ω).

3See https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/low-
emissions-economy/nz-battery/
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Thus power supply qi,b,t(ω) can be greater than demand di,b,t(ω) in region i,
the excess ui,b,t(ω) being stored. Similarly power supply qi,b,t(ω) can be less
than demand di,b,t(ω) in region i, the shortfall being released vi,b,t(ω) or shed
ri,b,t(ω).

The total amount of energy put into pumped storage must on average
balance that extracted with an efficiency loss ζ < 1, giving

ζ
∑
ω

P(ω)
∑
t

∑
b∈Bt

Hbui,b,t(ω) =
∑
ω

P(ω)
∑
t

∑
b∈Bt

Hbvi,b,t(ω).

We can also add a constraint on the size R of the reservoir, by limiting the
maximum energy that can be released in any year∑

t

∑
b∈Bt

Hbvi,b,t(ω) ≤ R, ω ∈ Ω.

The data used for this experiment are based on preliminary estimates made
in a report to the Interim Climate Change Committee Culy (2019), and should
be regarded as indicative rather than authoritative. The capital cost of the
infrastructure required for the Onslow scheme (e.g., land, tunnels, dams) when
annualized was estimated to be $232.2 M. This estimate excludes the cost
of generation plant that is chosen by the model to have capacity between 0
and 1000MW at an annualized cost of $25800/MW/y. Annualized costs were
chosen based on cost recovery rates used for stored hydro assuming a lifetime
of 40 years. The round trip efficiency of pumped energy was chosen to be ζ =
0.8, and we assumed unlimited storage capacity R. The model was run with
and without the Onslow scheme for a range of constraints on expected CO2

emissions. We focus on results obtained when the bound on these is 150,000t/y,
which is about 5% of 2017 emission levels from electricity generation.

The results are shown in Tables 5 and 6. In the absence of Onslow the
optimal capacity plan is to build 2 GW of wind at HAY augmented by a 500
MWh battery in SI. The annual cost of this is $2.105 B. If the Onslow scheme
is built then the optimal capacity plan is to install the maximum of 1000 MW
generation in the scheme. This saves the cost of a 500 MWh battery in SI,
and reduces the need for wind capacity at HAY, which reduces to 1407.4 MW.
The annual capital and operating cost is $1.898 B. If one adds the annual
cost of the Onslow infrastructure ($232.2 M) then the total annual cost is
$2.13 B, which is approximately the same as the annual cost without Onslow.
The difference between the annual cost of a system with and without Onslow
depends on the admissible level of CO2 emissions from electricity generation.
If the constraint on total CO2 emissions is relaxed to be above 150,000t/y then
the Onslow scheme becomes uneconomic compared with increased investment
in thermal plant. Conversely, a stricter constraint on emissions requires more
investment in batteries and wind, making the Onslow scheme less expensive
in comparison.
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Table 5: New capacity built (MW) by technology and region for emissions
constraint of 150,000t/y,assuming no Onslow scheme.

Capacity SI HAY NI

ONSLOW 0.0 0.0 0.0
SLOWBATT 500.0 500.0 500.0
WIND 0.0 2049.9 5000.0

Table 6: New capacity built (MW) by technology and region for emissions
constraint of 150,000t/y, assuming Onslow scheme.

Capacity SI HAY NI

ONSLOW 1000.0 0.0 0.0
SLOWBATT 0.0 500.0 500.0
WIND 0.0 1407.4 5000.0

6 Conclusion

This paper has presented a two-stage stochastic programming model for
planning the expansion of electricity generation to achieve specific renewable-
energy targets. Different policy prescriptions can be modeled using different
formulations of the objective function of this model, each of which is shown
to yield different capacity mixes and generation outcomes. This serves to
illuminate the advantages and drawbacks of different policy choices.

Versions of our model have been applied to a case study using New Zealand
data. This study is not intended to compute recommended policy choices, but
rather to serve as an illustration of the power of our models. The models show
that there are important differences between policies that mandate nonrenew-
able capacity limits and those that mandate nonrenewable energy (and CO2)
levels. The latter class of model is more aligned with the underlying objective
of reducing greenhouse gas emissions. Similarly chance-constrained versions
of our model yield less desirable emission outcomes than those that focus on
constraining average emissions.

A common theme that emerges from our experiments is that pursuing a
100% renewable electricity system by 2035 will be very expensive in compari-
son with a less ambitious objective. Moreover closing down all “non-renewable”
generation capacity (in order to achieve the 100% target) will not prevent
remaining carbon emissions from “renewable” geothermal generation and CCS.
And our work shows that if inflows to hydro reservoirs are uncertain then
removing non-renewable capacity does not always result in lower emissions. So
although it is arguably a useful political commitment, reducing non-renewable
electricity generation capacity should not be the objective of an emission reduc-
tion program which should focus instead on the amounts of non-renewable
generation.
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We also observe that qualifying the 100% renewable electricity target by
adding “in a normal hydrological year” leaves a lot of room for interpreta-
tion of “normal”, and so could relax constraints on emissions too much. Our
chance-constrained interpretation produced zero CO2 emissions in over 50% of
historical years, but gave worse emissions on average than alternative models
that constrained this explicitly.

In 2022, in response to advice from the Interim Climate Change Commis-
sion, the New Zealand Government recognized the high costs of meeting their
2017 policy statement and restated in MBIE: Terms of Reference for Energy
Strategy (2022) that the 100% renewable electricity target is an aspiration
rather than a policy constraint.

Since the models we are considering have long time horizons over which
uncertain effects will become realized gradually, there is considerable value in
developing a multistage version of our model. An example of such a multi-
stage model using scenarios is described in Domı́nguez et al (2021). A natural
approach to model uncertainty that evolves over different times scales uses mul-
tihorizon scenario trees (see Kaut et al (2014)) in which investment decisions
are made at nodes of a coarse scenario tree that models long-term uncertainty
(such as load and technology advances) and operational decisions are made at
the nodes of this tree, subject to short-term uncertainty (as modeled by the
scenarios described in this paper). The approach of most models such as that
in Domı́nguez et al (2021) is to treat short-term uncertainty using “represen-
tative days” (see e.g. Baringo and Conejo (2013)), but this is not feasible with
a system where short-term uncertainty affects hydroelectric storage. Develop-
ing a multistage model for the New Zealand electricity system incorporating
this feature is the subject of a forthcoming companion paper Downward and
Philpott (2023) that has been presented as Philpott and Downward (2021).

A further policy complication in developing social planning optimization
models arises from the fact that, in most industrialized countries, electricity
is supplied by large generating companies operating in competitive markets.
Since these companies will make the investments in new renewable energy,
the plans computed from models such as the one in this paper should be
aligned with the profits made by these investments. It is well-known that if
markets are competitive and complete and if the investors are risk neutral,
then a risk-neutral social plan can be shown to correspond to the competitive
equilibrium.

This is not necessarily true if investors are risk averse or behave strate-
gically. Future work Ferris and Philpott (2023) will investigate how to price
risks appropriately so that the risk measure of the social planner emerges from
those of the investors (see Ralph and Smeers (2015); Kok et al (2018); Ferris
and Philpott (2022)).
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Appendix A Stochastic planning model
formulation

A.1 Sets

ω ∈ Ω, scenarios
i ∈ I, locations
k ∈ Ki, technologies at location i
t ∈ [0, T ], seasons
b, b′ ∈ Bt, load blocks in season t

A.2 Parameters

Dt, number of days in season t
Hb, number of hours in load block b
Kk, capital cost ($/MW) of technology k
Lk, operations and maintenace cost ($/MW) of technology k
Ck, short-run marginal cost ($/MWh) of technology k
V , value ($/MWh) of lost load (VOLL)
di,b,t(ω), demand (MW) at location i in load block b in season t in scenario ω
Uk,i, existing capacity (MW) of technology k at location i
Xk,i, bound on new capacity ($/MW) of technology k at location i
µk,i,b,t(ω), load factor of technology k at location i in load block b in season t in scenario ω
νk,i,t(ω), inflow factor for hydro storage k at location i in season t in scenario ω
αi,j , loss factor for transmission between location i and location j
ηk, round-trip efficiency of battery type k
βk, maximum rate of charge (MW/MWh) of battery type k
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A.3 Variables

ψ(ω), total system disbenefit ($) in scenario ω
xk,i, new additional capacity (MW) of technology k at location i
zk,i, resulting capacity (MW) of technology k at location i
Zi,t(ω), operating disbenefit ($) at location i in season t in scenario ω
yk,i,b,t(ω), generation (MW) of technology k at location i in load block b

in season t in scenario ω
ri,b,t(ω), load reduction (MW) at location i in load block b in season t in scenario ω
si,t, hydro storage targets (MWh) to be met at location i

in season t (in every scenario)
qi,b,t(ω), power production and net import (MW) at location i in load block b

in season t in scenario ω
fi,j,b,t(ω), power transmission (MW) from location i to location j in load block b

in season t in scenario ω
gk,i,b,b′,t(ω), power (MW) transferred into battery k from block b to block b′ at location i

in season t in scenario ω

A.4 Formulation

P: min E(ψ)
s.t. ψ(ω) =

∑
i

∑
k∈Ki

(Kkxk,i + Lkzk,i)
+
∑

i

∑
t∈[0,T ] Zi,t(ω)

Zi,t(ω) =
∑

b∈Bt
Hb

∑
k∈Ki

Ckyk,i,b,t(ω)
−V

∑
b∈Bt

Hb (di,b,t(ω)− ri,b,t(ω)) ,
xk,i ≤ Xk,i,
zk,i ≤ xk,i + Uk,i,

yk,i,b,t(ω) ≤ zk,i,
yk,i,b,t(ω) ≤ µk,i,b,t(ω)zk,i,∑

b∈Bt
Hbyk,i,b,t(ω) ≤ νk,i,t(ω)

∑
b∈Bt

Hbzk,i − si,t + si,t−1,
ri,b,t(ω) ≤ di,b,t(ω),
qi,b,t(ω) =

∑
k∈Ki

yk,i,b,t(ω)

+
∑

j

(
(1− αj,i

2 )fj,i,b,t(ω)− (1 +
αi,j

2 )fi,j,b,t(ω)
)

−
∑

k∈Ki

∑
b′ ̸=b gk,i,b,b′,t(ω)

+
∑

k∈Ki
ηk
∑

b′ ̸=b

gk,i,b′,b,t(ω)Hb′

Hb
,

di,b,t(ω) ≤ qi,b,t(ω) + ri,b,t(ω),∑
b∈Bt

Hb

∑
b′ ̸=b gk,i,b,b′,t(ω) ≤ zk,iDt,∑
b′ ̸=b gk,i,b,b′,t(ω) ≤ βkzk,i,

f ∈ F ,
s ∈ H.
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Appendix B Data used in New Zealand model

Excel sheets with a full data set and GAMS models are available for down-
load from Data Repository for ‘Renewable electricity capacity planning with
uncertainty at multiple scales’ (2022).

Table B1: Number of hours in each load block b in each season t = 0, 1, 2, 3.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 10 50 100 200 300 300 300 300 300 300
1 10 50 124 200 300 300 300 300 300 300
2 10 50 148 200 300 300 300 300 300 300
3 10 50 148 200 300 300 300 300 300 300

Table B2: Estimated 2035 demand (MW) in each load block b in each season
t = 0, 1, 2, 3, in each region i.

SI b1 b2 b3 b4 b5 b6 b7 b8 b 9 b10

0 2194 2152 2113 2055 1989 1913 1845 1752 1620 1473
1 2302 2263 2219 2146 2042 1942 1833 1710 1587 1447
2 2311 2290 2254 2178 2073 1959 1857 1755 1634 1478
3 2188 2189 2170 2096 1999 1924 1873 1778 1670 1498

HAY b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 583 570 550 541 524 502 469 417 355 328
1 744 722 707 665 613 580 545 474 411 364
2 760 735 720 681 633 597 563 500 429 376
3 630 591 570 552 535 512 473 422 369 343

NI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 3502 3465 3428 3335 3227 3027 2797 2504 2119 1905
1 4196 4106 3912 3656 3427 3264 3012 2635 2250 1981
2 4310 4160 4011 3810 3583 3380 3172 2805 2350 2079
3 3692 3578 3480 3382 3255 3092 2856 2550 2164 1955
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Table B3: Parameters µ̂i,t for run-of-river generation. Since there is no hydro
generation possible in the HAY region these data are not estimated.

SI 0 1 2 3

2005 0.611 0.471 0.448 0.397
2006 0.431 0.487 0.437 0.644
2007 0.492 0.506 0.492 0.612
2008 0.486 0.413 0.399 0.572
2009 0.464 0.594 0.531 0.549
2010 0.495 0.601 0.536 0.579
2011 0.618 0.539 0.441 0.553
2012 0.394 0.439 0.522 0.572
2013 0.498 0.554 0.656 0.592
2014 0.555 0.601 0.673 0.630
2015 0.532 0.632 0.598 0.611
2016 0.532 0.680 0.592 0.647
2017 0.562 0.381 0.500 0.513

NI 0 1 2 3

2005 0.400 0.338 0.380 0.413
2006 0.360 0.510 0.621 0.384
2007 0.335 0.230 0.512 0.350
2008 0.209 0.294 0.685 0.378
2009 0.275 0.292 0.506 0.464
2010 0.303 0.335 0.603 0.416
2011 0.405 0.503 0.511 0.402
2012 0.436 0.432 0.515 0.385
2013 0.201 0.260 0.339 0.390
2014 0.209 0.349 0.396 0.348
2015 0.168 0.413 0.527 0.348
2016 0.269 0.330 0.545 0.483
2017 0.356 0.564 0.682 0.450

Table B4: Run-of-river flexibility parameters αi,t,b as estimated from histori-
cal run-of-river hydro generation in each region . The sum of αi,b,t weighted by
the hours in each block equals the number of hours in season t. The parameters
µk,i,b,t for k =run-of-river plant are computed to be µk,i,b,t = αi,b,tµ̂i,t.

SI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 1.305 1.305 1.305 1.000 1.000 1.000 1.000 0.946 0.946 0.946
1 1.383 1.383 1.383 1.000 1.000 1.000 1.000 0.922 0.922 0.922
2 1.415 1.415 1.415 1.000 1.000 1.000 1.000 0.904 0.904 0.904
3 1.263 1.263 1.263 1.000 1.000 1.000 1.000 0.939 0.939 0.939

NI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 1.546 1.546 1.546 1.000 1.000 1.000 1.000 0.903 0.903 0.903
1 1.680 1.680 1.680 1.000 1.000 1.000 1.000 0.861 0.861 0.861
2 1.488 1.488 1.488 1.000 1.000 1.000 1.000 0.887 0.887 0.887
3 1.447 1.447 1.447 1.000 1.000 1.000 1.000 0.897 0.897 0.897



Springer Nature 2021 LATEX template

36 Renewable capacity planning

Table B5: Parameters νk,i,t for stored hydro generation. Since there is no
hydro generation possible in the HAY region these data are not estimated.

SI 0 1 2 3

2005 1.141 0.575 0.593 0.637
2006 0.851 0.729 0.615 1.144
2007 0.862 0.622 0.594 0.938
2008 0.893 0.471 0.652 1.140
2009 0.839 0.832 0.691 0.920
2010 0.924 0.808 0.680 1.115
2011 0.803 0.652 0.492 0.957
2012 0.723 0.517 0.707 0.975
2013 0.774 0.685 0.774 1.064
2014 0.759 0.922 0.588 0.988
2015 0.789 1.016 0.579 0.980
2016 1.129 0.894 0.613 0.822
2017 0.723 0.517 0.707 0.975

NI 0 1 2 3

2005 0.365 0.321 0.451 0.494
2006 0.370 0.480 0.578 0.466
2007 0.342 0.306 0.551 0.427
2008 0.204 0.376 0.754 0.486
2009 0.286 0.319 0.535 0.480
2010 0.271 0.407 0.629 0.419
2011 0.385 0.472 0.499 0.531
2012 0.422 0.392 0.607 0.451
2013 0.224 0.375 0.420 0.461
2014 0.215 0.391 0.453 0.402
2015 0.213 0.467 0.579 0.361
2016 0.316 0.393 0.591 0.475
2017 0.422 0.392 0.607 0.451

Table B6: Estimated parameters µk,i,b,t for photovoltaic solar generation as
a proportion of capacity.

SI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0.158 0.205 0.338 0.318 0.311 0.214 0.253 0.131 0.015 0.003
1 0.016 0.030 0.038 0.067 0.123 0.121 0.077 0.078 0.006 0.001
2 0.008 0.028 0.050 0.084 0.121 0.149 0.162 0.064 0.006 0.001
3 0.409 0.370 0.371 0.375 0.248 0.218 0.230 0.157 0.045 0.017

HAY b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0.158 0.205 0.338 0.318 0.311 0.214 0.253 0.131 0.015 0.003
1 0.016 0.030 0.038 0.067 0.123 0.121 0.077 0.078 0.006 0.001
2 0.008 0.028 0.050 0.084 0.121 0.149 0.162 0.064 0.006 0.001
3 0.409 0.370 0.371 0.375 0.248 0.218 0.230 0.157 0.045 0.017

NI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0.246 0.271 0.348 0.321 0.277 0.185 0.240 0.129 0.013 0.002
1 0.025 0.039 0.050 0.083 0.133 0.143 0.099 0.079 0.008 0.001
2 0.011 0.042 0.081 0.103 0.137 0.152 0.171 0.077 0.010 0.001
3 0.374 0.342 0.340 0.309 0.224 0.202 0.234 0.155 0.036 0.012
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Table B7: Estimated parameters µk,i,b,t for wind generation for the scenario
when wind blows in block 1. The same table applies when wind does not blow
in block 1, except that the column headed b1 is replaced by zeroes.

SI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0.25 0.18 0.14 0.28 0.37 0.37 0.41 0.37 0.34 0.38
1 0.34 0.18 0.14 0.28 0.37 0.37 0.41 0.37 0.34 0.38
2 0.35 0.17 0.25 0.26 0.27 0.30 0.37 0.36 0.32 0.35
3 0.22 0.11 0.16 0.24 0.29 0.32 0.37 0.33 0.28 0.37

HAY b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0.35 0.15 0.17 0.36 0.51 0.48 0.46 0.47 0.35 0.54
1 0.30 0.15 0.17 0.36 0.51 0.48 0.46 0.47 0.35 0.54
2 0.44 0.31 0.38 0.42 0.44 0.45 0.53 0.47 0.41 0.61
3 0.32 0.11 0.19 0.35 0.40 0.43 0.48 0.50 0.35 0.48

NI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 0.28 0.25 0.30 0.40 0.49 0.46 0.48 0.52 0.40 0.55
1 0.52 0.25 0.30 0.40 0.49 0.46 0.48 0.52 0.40 0.55
2 0.36 0.31 0.34 0.35 0.34 0.37 0.45 0.41 0.33 0.45
3 0.19 0.13 0.23 0.28 0.38 0.45 0.41 0.42 0.31 0.48

Table B8: Increased estimated 2035 demand (MW) from PEVs and elec-
trification in each load block b in each season t = 0, 1, 2, 3, in each region
i.

SI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 2550 2506 2442 2346 2255 2159 2076 1932 1789 1630
1 2579 2538 2497 2410 2285 2169 2024 1871 1736 1585
2 2588 2565 2532 2442 2316 2186 2048 1916 1784 1615
3 2544 2543 2499 2388 2265 2171 2104 1959 1839 1655

HAY b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 787 771 742 713 681 649 610 528 463 429
1 913 887 876 825 760 718 668 577 510 456
2 929 900 890 841 780 736 686 602 528 468
3 834 791 762 724 693 659 614 533 476 444

NI b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

0 4355 4315 4223 4046 3876 3641 3376 2967 2551 2315
1 4891 4798 4604 4312 4029 3839 3513 3059 2644 2352
2 5005 4852 4703 4466 4185 3955 3673 3229 2743 2450
3 4544 4428 4274 4093 3904 3707 3435 3013 2597 2365
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