
OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0030-364X |eissn 1526-5463 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

On Cournot Equilibria in Electricity Transmission
Networks

A. Downward, G. Zakeri, A.B. Philpottt
Department of Engineering Science, University of Auckland, New Zealand.

We consider electricity pool markets in radial transmission networks in which the lines have capacities. At
each node there is a strategic generator injecting generation quantities into the pool. Prices are determined
by a linear competitive fringe at each node (or equivalently a linear demand function) through a convex
dispatch optimization. We derive a set of linear inequalities satisfied by the line capacities that gives necessary
and sufficient conditions for the unconstrained one-shot Cournot equilibrium to remain an equilibrium in
the constrained network. We discuss the extension of this model to general networks and to lines with
transmission losses, and conclude by discussing the application of this methodology to the New Zealand
electricity transmission network.
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1. Introduction

There has been much interest in recent years in extending Nash equilibrium models for oligopolistic
competition to the setting of nodal electricity pool markets (see Cardell et al. 1997, Metzler et al.
2003, Neuhoff et al. 2005). In nodal electricity pool markets, generators offer quantities of power
at the nodes of a transmission network, and inform the system operator of the price they wish to
be paid for this power. The system operator solves a convex optimization model that schedules the
generation to meet the load at least cost, and then dispatches the generation that is to be used.
This economic dispatch model is commonly based on the linear equations determining DC load flow
(or quadratic equations if line losses are included). The shadow prices of the flow-conservation con-
straints define an electricity price at each node of the transmission network. This is the additional
cost to the system of meeting one more unit of demand at a particular node; this pricing scheme
is referred to as nodal pricing or locational marginal pricing. There are a number of references
available on this model and its properties, see e.g. Metzler et al. (2003), Philpott and Pritchard
(2004), Schweppe et al. (1988).

When generators offer their power at marginal cost, the economic dispatch model gives nodal
prices at which the total welfare of the market participants is maximized. Each generator’s utility is
measured by its revenue (nodal price times dispatched quantity) minus its cost, and consumer wel-
fare is measured by the area between the demand curve and the nodal price. Because of economies
of scale, electricity markets typically have small numbers of generating companies with incentives
to offer in their power strategically. The study of market outcomes from such strategic behaviour
requires equilibrium models from game theory. The most popular model for studying strategic
behaviour in electricity markets follows the Cournot paradigm.

In the Nash-Cournot equilibrium model, all strategic generators simultaneously choose a fixed
quantity of power to inject at their own location, each aiming to maximize its own welfare. The price
at each node is determined by transmitting the injected power to meet elastic demand at the nodes.
In most wholesale electricity markets, demand is inelastic in the short term, at least for residential
consumers, and so demand elasticity is interpreted liberally in this setting. It can correspond to
industrial load shedding or fixed demand and a competitive fringe who are assumed to offer fixed
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increasing supply curves at some nodes. Although there are some important assumptions in the
Cournot model that make it less attractive than the more realistic supply-function equilibrium
models (see e.g. Green and Newbery 1992, Klemperer and Meyer 1989) it has proved to be a
popular modelling tool because of its tractability.

As outlined by Yao, Oren and Adler (2008), the different classes of Cournot equilibrium models
one can derive depend on the assumptions made about the rationality of the generators. The
most comprehensive and arguably realistic is the full-rationality assumption. In the transmission
congestion setting (where lines may become saturated) this assumes that generators anticipate the
effect of their generation decisions on the congestion in the network, and therefore on the payments
that they receive from potentially higher prices. In a full-rationality model, the generators act
as leaders, each choosing a generation quantity simultaneously, assuming that other generation
quantities are fixed, but anticipating a follower stage in which the system operator computes
clearing prices using the economic dispatch model.

An early contribution in the understanding of this model was provided by the paper of Borenstein,
Bushnell and Stoft (2000) that showed, in a two-node symmetric setting, that a Nash-Cournot
equilibrium in pure strategies might not exist if the transmission capacity of the line joining the
nodes was not sufficiently large. In asymmetric situations with congestion, full-rationality models
may result in either no equilibrium, a unique equilibrium, or more than one equilibrium. This has
been illustrated in models of the European market by Neuhoff (2003), and in a model of the New
Zealand electricity market by Downward (2006).

The development of models for computing Nash-Cournot equilibria in congested electricity trans-
mission networks is an active area of research. These equilibria are given by the solutions to
equilibrium problems with equilibrium constraints (EPECs), as modelled by Hu and Ralph (2007).
Here each generator maximizes its profit by solving a mathematical program with equilibrium con-
straints (MPEC); these problems are non-convex due to the ability of generators to congest lines.
The resulting EPEC is inherently difficult to solve, because the first order conditions are insufficient
to guarantee global optimality for each MPEC. The solutions that are computed are referred to as
local Nash equilibria, but are not guaranteed to be full-rationality equilibria as defined above.

Since the lack of existence or non-uniqueness of Nash equilibria is a serious impediment to the
economic analysis of electricity markets with transmission systems, most authors seeking to quan-
tify the effects of market power in transmission networks have chosen to relax the full-rationality
assumption to so-called bounded rationality. Here it is assumed that the system operator is itself a
player in the game who makes decisions simultaneously with the generators choosing their levels
of generation. Observe that this is in contrast to the more realistic full-rationality model, in which
the system operator determines the optimal transmission flows after the generators have chosen
their generation levels in a Stackelberg-type game where the system operator’s response is taken
account of in the generators’ choices of strategies.

One may interpret bounded rationality as an assumption that generators will act as price-
takers with respect to transmission, but price-setters at their own node. Within this framework,
there are several common variations, which are explored by Yao et al. (2008) for example. In
one variation, generators assume that competitors’ injections and all transmission flows are fixed,
and then optimize their injection. Simultaneous optimization of injections gives an equilibrium.
Unfortunately, in some circumstances, this approach can give solutions that are not intuitively
reasonable. For example, when applied to the Borenstein et al. example of symmetric generators
at opposite ends of an uncongested line, the bounded rationality approach would yield two local
monopolies as opposed to the symmetric Cournot duopoly solution. Alternative approaches (in
which generators assume nodal price premiums are fixed rather than transmission quantities) will
overcome this problem, but have other limitations, such as yielding the symmetric Cournot duopoly
solution for the example by Borenstein et al. (2000) when the line capacity is small.
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As mentioned above, Borenstein et al. analyse an electricity market with a two-node grid, and
compute the minimum line capacity required to support the unconstrained Nash-Cournot equilib-
rium, under the assumption that generators behave with full rationality. It was found that if the
line were too small there would be an incentive for some generator to withhold supply, allowing the
single line to congest toward their node; the generator would in essence act as a local monopolist
over the remaining demand. In this paper, we apply this concept to more general networks, and
seek to derive conditions which ensure that the unconstrained Nash-Cournot equilibrium remains
a Nash equilibrium in the presence of (lossless) line capacities. The difficulty in deriving such
conditions is due to the combinatorial nature of problems involving congested networks; here the
number of ways that a generator can congest the grid increases exponentially with the number of
lines. However by restricting ourselves to radial networks we show for linear demand curves and
constant marginal generation costs that the problem simplifies in such a way that the set of arc
capacities which are necessary and sufficient for the existence of an unconstrained Nash-Cournot
equilibrium is a convex polyhedral set, which we call the competitive capacity set.

This result is significant for several reasons. In the first instance, our model allows planners to
assume participants have full rationality. We feel that a major drawback of bounded-rationality
models is that while the assumptions made about the rationality of the participants can materially
affect the results of the model, these assumptions appear to be impossible to test a priori. Our
results can be used to characterize the circumstances in which the full-rationality model yields the
unconstrained Nash equilibrium.

Throughout this paper we assume linear demand functions (or competitive fringe), which is a
common approach in electricity market modelling, see e.g. Yao et al. (2008). In practice, the supply
functions making up a competitive fringe are typically piecewise constant, and so a linear function
is an approximation. However, this conveniently enables the competitive capacity set for radial
networks to be described explicitly as a set of linear inequalities. The convexity of this set is useful
when planning transmission grid expansions using optimization models.

Although the owner of the transmission network is primarily concerned with providing a reliable
transmission service at low cost, regulators in nodal electricity markets are concerned with providing
enough grid capacity to enable competition between geographically separate agents. Exploring the
tradeoffs between these is important as the transmission network is expanded to meet growing
electricity demand and generation.

One could argue that a network with capacities ensuring an unconstrained Cournot equilibrium
might be too expensive. Indeed in the symmetric two-node example of Borenstein et al. (2000) the
line carries no flow in equilibrium and so appears to be redundant. However in many cases the
capacity needed to avoid gaming of congestion is lower than what might be thought necessary. In
any case, knowing this limit is important to evaluate the tradeoffs between the competition (and
other) benefits of building a line and its capital cost. We illustrate the use of this methodology in
practice by applying our model to the New Zealand electricity transmission network.

The paper is laid out as follows. In the next section, we formulate a version of the electricity
economic dispatch problem for our setting with radial networks and give its optimality conditions.
We then use these conditions in section 2.2 to establish a key property of the residual demand
curve faced by a generator at a given node. In section 2.3, this property is used to derive conditions
on the line capacities that guarantee an unconstrained Nash-Cournot equilibrium. In section 3,
we consider what may happen if the underlying network includes any loops. In a DC load flow
model the presence of loops adds constraints (from Kirchhoff’s laws) to the dispatch problem that
invalidates the analysis in section 2. We also discuss the effect of transmission losses, and show that
a Nash equilibrium always exists for the two-node symmetric case considered in Borenstein et al.
(2000). We conclude with an application of the model to the New Zealand electricity transmission
network.
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2. Radial transmission networks

In this section we consider a radial (tree) network, (N ,A), of nodes i ∈ N , and directed lossless
arcs denoted ij ∈A, where i is the tail node and j is the head node. The flow on arc ij is denoted
fij and the capacity of arc ij is denoted Kij. At each node i there is a known demand di, such that
∑

i∈N di > 0, and a competitive fringe defined by a linear supply function Si(p) = aip, where ai > 0
for all i. Observe that this is equivalent to assuming a linear demand function of the form

Di(p) = di − aip.

We assume at each node, i, that there is a single generator with constant marginal cost ci ≥ 0, which
injects power qi (this assumption is not essential and can easily be relaxed to allow for multiple
generators at a node). We denote by xi the dispatch of the competitive fringe. Occasionally we
refer to the above variables in vector form, for instance x stands for the vector with components
xi. The generators at each node are assumed to behave strategically; we model this behaviour by
way of a Cournot game, whereby each generator, i, chooses its qi so as to maximize its profit.

2.1. The economic dispatch problem

In nodal pool markets, given an injection qi for each generator, nodal prices are determined by a
system operator whose objective is to minimize the cost of meeting demand. This is achieved by
solving the following economic dispatch problem.

P (q) := min
∑

i∈N

1
2ai

xi
2

s.t. −xi +
∑

j,ij∈A

fij −
∑

j,ji∈A

fji = qi − di [πi] ∀i∈N
−Kij ≤ fij ≤Kij

[

η1
ij, η

2
ij

]

∀ij ∈A
xi ≥ 0 ∀i∈N .

The objective of P(q) is to minimize the area under the competitive fringe supply functions. This
is equivalent to maximizing the total welfare of consumers and generators where there is demand
elasticity (as opposed to a fringe). The first constraint is a node balance constraint for each node
and the corresponding duals give the nodal prices. The second constraint ensures that the flow
on any arc does not exceed that arc’s capacity. The final constraint ensures that the competitive
fringes do not produce negative amounts of electricity. Note that P(q) is not feasible for all q, e.g.
if

∑

i∈N (qi − di) > 0. At this point we have not placed any restriction on the sign of any element
of q, however, in subsequent sections q will be non-negative.

The optimality conditions of P(q) are given by the following Karush-Kuhn-Tucker (KKT) con-
ditions:

−xi +
∑

j,ij∈A

fij −
∑

j,ji∈A

fji = qi − di ∀i∈N
πi −πj + η1

ij − η2
ij = 0 ∀ij ∈A

0≤ 1
ai

xi −πi ⊥ xi ≥ 0 ∀i∈N
0≤Kij − fij ⊥ η1

ij ≥ 0 ∀ij ∈A
0≤Kij + fij ⊥ η2

ij ≥ 0 ∀ij ∈A.

(1)

Note that in absence of capacity constraints, the nodal prices are the same across all nodes in
the network, as power can be bought from anywhere without restriction.

We will now derive two technical lemmas arising from the optimality conditions for the economic
dispatch model. The first lemma is a simple consequence of the optimality conditions above. It
states that if any line is congested from node i to j at the optimal solution to the dispatch problem,
then πi < πj.
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Lemma 1. Suppose that (x, f) satisfies the constraints of P(q) and 0≤ 1
ai

xi −πi ⊥ xi ≥ 0, ∀i∈N .
Then (x, f) solves P(q) if and only if, for every ij ∈A, either

(Kij − fij)⊥ (πj −πi)+, (2)

or

(Kij + fij)⊥ (πj −πi)−, (3)

where (πj −πi)+
= max{πj −πi,0}, and (πj −πi)− =−min{πj −πi,0}.

Proof. The result follows from the fact that P(q) is a convex optimization problem, rendering
the conditions (1) necessary and sufficient for optimality of P(q). If there exists an instance of x, f
and π satisfying the conditions of the lemma, and either (2) or (3) then defining η1

ij = (πj − πi)+,
η2

ij = (πj −πi)−, gives (1) demonstrating the optimality of x and f . Conversely if x and f solve P(q)
then there exists π, η1 and η2 satisfying (1). If η1

ij and η2
ij are both strictly positive then redefining

η1
ij = η1

ij −min{η1
ij, η

2
ij}, η2

ij = η2
ij −min{η1

ij, η
2
ij},

gives η1
ij and η2

ij satisfying (1) with η1
ij = (πj −πi)+, η2

ij = (πj −πi)−. This gives

(Kij − fij)⊥ (πj −πi)+,

and

(Kij + fij)⊥ (πj −πi)−

by virtue of the last two conditions in (1). �

Observe, in the above proof, that the optimal dual variables η1, η2 are defined in terms of π.
Furthermore, from (1), the optimal flows f and dispatches x can be determined uniquely from the
optimal prices π.

In the next lemma, we show that when there is known to be congestion in the network, uncon-
gested subtrees can be solved independently of one another.

Lemma 2. Consider P(q) for some arbitrary but fixed q; now let F and G be any disjoint subsets
of A and set fij = Kij, ∀ij ∈F , and fij =−Kij, ∀ij ∈ G. Now for each i∈N define

q̂i = qi −
∑

{j,ij∈F∪G}

fij +
∑

{j,ji∈F∪G}

fji

to be a new set of injections, augmented by fixed flows fij, ij ∈ F ∪G. If the optimal solution to
P(q̂) for each connected component of (N ,A\ (F ∪G)) gives π with πi ≤ πj, ij ∈F , πi ≥ πj, ij ∈ G,
then these solutions together with fij, ij ∈F ∪G solve P(q).

Proof. By construction the solution is easily shown to satisfy the optimality conditions for each
arc in (N ,A\ (F ∪G)). The remaining optimality conditions pertain to arcs in F ∪G, which hold
by lemma 1. �

Since P(q) is a strictly convex quadratic program, it has a unique solution. The preceding lemma
has shown that by correctly predicting the congested arcs in the network, the optimal solution to
the dispatch problem can be found by separating the dispatch problem into subtrees and solving
each subtree independently. However, as there are a finite number of ways that the sets F and G
defined in lemma 2 can be constructed, by enumerating the possible choices of these sets we are
guaranteed to find the unique solution to P(q).
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Figure 1 Residual demand curve for generator n.
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2.2. Prices nodal pool markets over radial networks

In this section, we establish some properties of the residual demand curve at node n, i.e. the price at
node n as a function of the injection qn at that node. To establish these properties, it is convenient
to adopt the convention throughout this section that all arcs in the radial network are directed
towards node n; this adjusted set of arcs will be denoted by An. We first establish that the residual
demand curve faced by each generator is piecewise linear. Furthermore, if q̃ is a vector of injections
such that no line is constrained at the optimal solution to the economic dispatch problem P(q̃) (i.e.
prices are the same at all nodes), then the residual demand curve faced by the generator at node
n is convex for all qn < q̃n (and concave for all qn > q̃n); in fact this curve is piecewise linear, as we
assume linear fringes. (See figure 1.)

To establish this result, we consider a “decomposition scheme” for the network. A decomposition
δ for node n is determined by choosing a subtree Tδ of the network rooted at node n. We denote
the nodes and arcs within Tδ by Nδ and Aδ respectively. The network is therefore decomposed into
Tδ and several other subtrees, each rooted at the tail node of an arc with its head node in Nδ. We
denote by Bδ the set of arcs that link these subtrees. (See figure 2.)

For each node n, we denote by Dn the set of all decompositions pertaining to n. Given a decom-
position δ ∈Dn and a vector of injections q, we compute nodal prices πδ

i by setting fij = Kij for arcs
ij ∈ Bδ, and solving a modified dispatch problem, Pδ (q), which enforces these flows, but ignores
arc capacity constraints for the arcs in Aδ. We are interested in these decompositions because each
defines a possible solution to the KKT conditions in (1). Later in this section, we will show that a
generator only ever has incentive to congest lines toward their own node. So by considering all the
decompositions in Dn, we are effectively enumerating all possible solutions to the problem P(q)
where the nth component of q decreases below q̃n. In corollary 1, we consider the optimal solution
to Pδ (q) and define the necessary and sufficient conditions such that it also solves P(q).

The dispatch problem for decomposition δ is

Pδ (q) := min
∑

i∈N

1
2ai

xi
2

s.t. −xi +
∑

j,ij∈An

fij −
∑

j,ji∈An

fji = qi − di [π̄δ
i ] ∀i∈N

fij = Kij ∀ij ∈Bδ

−Kij ≤ fij ≤Kij ∀ij ∈An\ (Aδ ∪Bδ)
xi ≥ 0 ∀i∈N .
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Figure 2 A decomposition for node 5; here Nδ = {2,5,6} and Bδ = {12,36,75}.
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When Pδ (q) is feasible the dual variables of the node balance constraints, π̄δ
i , give the nodal prices

associated with decomposition δ.

Corollary 1. Suppose that (x, f,π) satisfies the optimality conditions for Pδ (q), for some δ ∈Dn

and some arbitrary but fixed, q and n. Then (x, f,π) solves P(q) with A = An, if and only if
πi ≤ πj, ∀ij ∈Bδ, and −Kij ≤ fij ≤Kij,∀ij ∈An.

Proof. Consider the optimal solution to Pδ (q). For this to solve P(q) it is necessary that it
satisfies the KKT conditions (1), which give:

πi ≤ πj, ∀ij ∈Bδ and

−Kij ≤ fij ≤Kij, ∀ij ∈Aδ.

These conditions are also sufficient by lemma 2, with F =Bδ and G = ∅. �

Due to the radial structure of the network, the problem P(q) can be decoupled in such a way
that the dispatch for the sub-tree Tδ can be computed independently of the rest of the network.
The dispatch problem for Tδ is given by

PTδ (q) := min
∑

i∈Nδ

1
2ai

xi
2

s.t. − ∑

i∈Nδ

xi =
∑

i∈Nδ

qi −
∑

i∈Nδ

di +
∑

ij∈Bδ

Kij [π̄δ
n]

xi ≥ 0 ∀i∈Nδ.

The KKT conditions of PTδ (q) can be written as

−
∑

i∈Nδ

xi =
∑

i∈Nδ

qi −
∑

i∈Nδ

di +
∑

ij∈Bδ

Kij (4)

0≤ xi ⊥
xi

ai

− π̄δ
n ≥ 0 ∀i∈Nδ. (5)

Lemma 3. Suppose that P(q) is feasible for some arbitrary but fixed q; for any δ, Pδ (q) is feasible
if and only if PTδ (q) is also feasible.
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Proof. Clearly if PTδ (q) is not feasible, Pδ (q) cannot be feasible either. Now suppose PTδ (q) is
feasible, and let (x̂, f̂) be a feasible solution to P(q). We know, from (1), that f̂ij ≤Kij, ∀ij ∈ Bδ,
and as there is no upper bound on x, we can construct a feasible solution,(x, f), to Pδ (q) with

xi =







x̂i +
∑

j,ij∈Bδ

(

Kij − f̂ij

)

, ∀i, ij ∈Bδ,

x̂i, ∀i∈N\ (Nδ ∪{i | ij ∈Bδ}) ,

fij =

{

Kij, ∀ij ∈Bδ,

f̂ij, ∀ij ∈An\ (Aδ ∪Bδ) ,

and the remainder of the solution defined by a feasible solution to PTδ (q). �

We define, for decomposition δ:

πδ
n =















∑

i∈Nδ

di−
∑

i∈Nδ

qi−
∑

ij∈Bδ

Kij

∑

i∈Nδ

ai
,

∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij ≥ 0,

−∞,
∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij < 0,
(6)

to be the nodal price at all nodes in Nδ.

Lemma 4. Given decomposition δ ∈Dn, PTδ (q) is feasible if and only if

∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij ≥ 0.

In this case the unique primal solution is xi = aiπ
δ
n and π̄δ

n = πδ
n is a corresponding dual solution.

Moreover if πδ
n > 0, it is the unique dual solution.

Proof. From the constraints of PTδ (q), it is easy to see that x is feasible if and only if

∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij ≥ 0.

Now we will consider two cases. First if

∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij = 0,

then xi = 0, ∀i∈Nδ. Here condition (5) becomes

π̄δ
n ≤ 0, ∀i∈Nδ,

which is satisfied by π̄δ
n = πδ

n = 0.
On the other hand, if

∑

i∈Nδ

di −
∑

i∈Nδ

qi −
∑

ij∈Bδ

Kij > 0,

then xi = aiπ
δ
n > 0, ∀i∈Nδ. Here condition (5) becomes

xi

ai

− π̄δ
n = 0, ∀i∈Nδ, (7)

and this system of equations has a unique solution, π̄δ
n = πδ

n. �
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Lemma 4 shows that πδ
n is an optimal dual solution to PTδ (q) so long as this problem is feasible.

However, if PTδ (q) were infeasible the dual solution would be undefined. Infeasibility results when
the total injection into the the set of nodes Nδ exceeds the total demand at these nodes. This
would mean that the marginal value of electricity should be some large negative value. To reflect
this, we have set πδ

n =−∞ when PTδ (q) is infeasible.
Recall that figure 1 shows a piecewise linear convex curve to the left of q̃n. Theorem 1 shows

that this curve can be obtained from maxδ∈Dn πδ
n. The following lemma, which we use in the proof

of theorem 1, shows that the price within some uncongested node set will increase if it is connected
to a more expensive node set.

Lemma 5. Suppose two disjoint uncapacitated radial networks with node sets N1 and N2 have opti-
mal dispatches, and node i∈N1 has price πi while node j ∈N2 has price πj < πi. Then connecting
node i and node j with a line of infinite capacity gives a new price πj

′ > πj.

Proof. We define the total demand within node sets N1 and N2 to be D1 and D2 respectively.
Since πi > πj we have

D1
∑

k∈N1

ak

>
D2

∑

k∈N2

ak

.

Thus

(D1 +D2)
∑

k∈N2

ak −D2

∑

k∈N2

ak = D1

∑

k∈N2

ak

> D2

∑

k∈N1

ak,

yielding

(D1 +D2)
∑

k∈N2

ak > D2

∑

k∈N1

ak +D2

∑

k∈N2

ak.

Dividing by
∑

k∈N2

ak ×
∑

k∈N1∪N2

ak gives

πj
′ =

D1 +D2
∑

k∈N1∪N2

ak

>
D2

∑

k∈N2

ak

= πj

as required. �

We will now examine the shape of the residual demand curve for generator n in two parts. We
first consider the range whereby qn < q̃n and qi = q̃i, ∀i ∈ N\{n}. As the injection qn decreases
from q̃n, we show in lemma 6 that arcs only ever congest towards node n. Therefore one of the
decompositions defined above will provide the optimal solution to the economic dispatch problem.
We prove in theorem 1 that this decomposition has price π∗

n equal to maxδ∈Dn πδ
n where πδ

n is the
price at node n with injection qn under the decomposition scheme δ ∈ Dn. Therefore the convex
part of the residual demand curve faced by generator n is the upper envelope of a finite number
of linear curves. For the range qn ≥ q̃n we will argue that the residual demand curve is piecewise
linear and concave.

Lemma 6. Consider the vector of injections q = q̃ for which there is no line congested at the optimal
solution to P(q). Suppose now that for some node, n, qn is decreased (leaving all other injections
fixed at q̃). As qn decreases the dispatch problem remains feasible, πn is non-decreasing, and the
flow in every line is non-decreasing in the direction of node n.



Downward, Zakeri, and Philpott: On Cournot Equilibria in Electricity Transmission Networks

10 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Proof. Note that initially the network contains no congested lines. The price at node n is a
decreasing function of the injection at node n, (as πn is the subgradient of a convex quadratic
program). Therefore, at least until any flows reach their bounds, as qn decreases the nodal prices
at all nodes increase uniformly. Since at optimality

πi =
1

ai

xi

each fringe dispatch xi increases as qn decreases, by a total amount that equals the change in qn.
Because the network has a radial structure, the changes in line flows in the direction of n are unique
and non-negative.

Now, if any flow fij hits a bound Kij at some value qn = q̄n then this defines a decomposition
δ ∈Dn with ij ∈Bδ. By lemma 2 we may fix the flows in Bδ and solve each subtree in δ separately
to give fringe dispatch x̄, say. It is easy to verify that as qn decreases below q̄n, we may write down
a solution to (1) that has xj = x̄j, j /∈ Nδ, and flows fij, ij ∈ Bδ remaining at their bounds. This
is because as qn decreases, πj increases to πδ

n, for j ∈ Nδ, and for j /∈ Nδ, πj remains fixed at its
current value, so the complementary slackness conditions for ij ∈ Bδ continue to be satisfied. The
reduction in qn means that the total demand for j ∈ Nδ exceeds supply, and so for each j ∈ Nδ,
xj increases to ajπ

δ
n, resulting in a unique increase in flow towards node n (where the deficit is

occurring).
As qn decreases we obtain a sequence of decompositions δ1, δ2, . . . with Nδk+1

⊂Nδk
, so we may

apply this argument recursively for each k to yield the result. �

The results above show that the price at node n is a non-increasing piecewise linear function
of qn. We now show that this is convex in the range qn < q̃n and concave in the range qn > q̃n.
To do this we first prove a simple lemma that characterizes the solution to P(q) when no arcs are
congested in the direction away from node n.

Lemma 7. Suppose at the solution to P(q) that fij >−Kij, ∀ij ∈An. This solution is the same as
the solution to P′ (q) given below

P′ (q) := min
∑

i∈N

1
2ai

xi
2

s.t. −xi +
∑

j,ij∈An

fij −
∑

j,ji∈An

fji = qi − di [πi] ∀i∈N
fij ≤Kij ∀ij ∈An

xi ≥ 0 ∀i∈N .

Proof. By assumption the constraint fij ≥ −Kij in P(q) is not binding. It is clear that if a
constraint to a convex problem is not active at the optimal solution, then the removal of the
constraint has no bearing on the optimal solution. Therefore we can create a problem P′ (q) without
this constraint, which has the same optimal solution. �

The KKT conditions for the modified dispatch problem, P′ (q) are

−xi +
∑

j,ij∈An

fij −
∑

j,ji∈An

fji = qi − di ∀i∈N
0≤ 1

ai
xi −πi ⊥ xi ≥ 0 ∀i∈N

0≤ πj −πi ⊥ Kij − fij ≥ 0 ∀ij ∈An.

(8)

Theorem 1. Recall the vector of injections q̃ for which there is no line congested at the optimal
solution to P(q̃). Now consider any vector of injections, q, such that qn < q̃n and qi = q̃i, ∀i ∈
N\{n}. The nodal price at node n, from the optimal solution to P(q) is given by π∗

n = maxδ∈Dn πδ
n,

where πδ
n is defined by equation (6).
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Proof. As there are only a finite number of decompositions in Dn, we know that the maximum
nodal price π∗

n is attained for some decomposition. Furthermore since the economic dispatch prob-
lem is a strictly convex quadratic program it has a unique optimal primal solution, and so there
is a unique solution π satisfying (1). As qn < q̃n and qi = q̃i, ∀i ∈ N\{n}, from lemmas 6 and 7,
we know the solution to (1) exists and is the same as to the solution to (8). We will proceed by
demonstrating that any decomposition δ ∈ Dn with πδ

n = π∗
n satisfies (8). We will therefore have

that the (unique) solution to (8) will satisfy πδ
n = π∗

n.
Suppose that we have a decomposition δ ∈ Dn with πδ

n = π∗
n. By construction, we know that

within each subtree of Dn, the conditions (8) are satisfied. Therefore if the solution to Pδ (q) does
not satisfy (8) then it must be the case that either

(A) a flow on an arc in Aδ exceeds its capacity, or
(B) there is a congested arc ij ∈Bδ where πδ

i > πδ
j , or

(C) the dispatch problem PTδ (q) is infeasible.
For (A), suppose that flm > Klm where lm ∈ Aδ. Removing lm from Aδ creates a new decom-

position δ′ with Nδ′ consisting of the node set containing node n, and setting flm = Klm. The net
flow into Nδ′ is thus smaller than it was for decomposition δ, and so πδ′

n is greater than πδ
n which

violates the assumption that πδ
n is maximal over all decompositions.

Now consider case (B). Here again we will create a new decomposition where the price at node
n will increase from πδ

n. We define N i to be the set of nodes in N \Nδ that are connected to node
i via an uncongested path including node i, and construct the decomposition γ with Nγ =N i ∪Nδ

(see figure 3). By taking into account the flow on congested arcs into and out of these node sets,
we find that the effective demands for N i and Nδ are

D1 =
∑

k∈N i

dk −
∑

k∈N i

qU
k +Kij −

∑

lm∈Bγ\Bδ

Klm, and

D2 =
∑

k∈Nδ

dk −
∑

k∈Nδ\{n}

qU
k − qn −Kij −

∑

lm∈Bδ\{ij}

Klm,

respectively. As
D1 +D2 =

∑

k∈Nγ

dk −
∑

k∈Nγ\{n}

qU
k − qn −

∑

lm∈Bγ

Klm,

and πδ
i > πδ

j it follows from lemma 5 that πγ
n = πγ

j > πδ
j = πδ

n, which violates the assumption that
πδ

n is maximal over all decompositions.
Finally for case (C), we represent the nodal price for an infeasible decomposition by −∞. Any

feasible dispatch, by lemma 4 has positive prices, and as we know there exists a decomposition for
which the dispatch is feasible, this violates the assumption that πδ

n is maximal over all decompo-
sitions. �

Theorem 2. Suppose that for some vector of injections q̃, the arcs are uncongested at the optimal
dispatch for the economic dispatch problem. The residual demand curve faced by the generator at
node n is a convex piecewise linear function, for qn ≤ q̃n.

Proof. The proof is a direct consequence of theorem 1, and the fact that the pointwise maximum
of a set of linear functions is a convex function. �

Corollary 2. Suppose that for some vector of injections q̃, the arcs are uncongested at the optimal
dispatch for the economic dispatch problem. The residual demand curve faced by the generator at
node n is a concave piecewise linear function, for qn ≥ q̃n.

Proof. It is easy to show, so long as P(q) is feasible, that analogous results to lemma 6 and
theorem 1 hold for qn ≥ q̃n. However, in this case the price is a pointwise minimum of a set of linear
functions giving a concave function. �
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Figure 3 Decomposition δ, with πδ
j > πδ

i .

j

i

Nδ

N i

Note that so far we have established the shape of the residual demand curve, faced by the
generator located at node n. For any player, n, in our radial network the residual demand curve is
a convex, piecewise linear curve in all quantities qn ≤ qU

n , and is a concave, piecewise linear curve
in all quantities qn ≥ qU

n .

2.3. Cournot equilibrium

We now turn our attention to the existence of Cournot equilibria in tree networks. We will define
the strategy space for the nth generator to be qn ∈ [0,∞), and its cost function to be cnqn. First, we
will show that there always exists an equilibrium for this game if the line capacities are infinitely
large. We then derive necessary and sufficient conditions on the line capacities which ensure that
their presence does not create an incentive for any generator to deviate from this equilibrium.
Borenstein et al. in Borenstein et al. (2000) demonstrated a similar analysis in the context of a
two node network.

In the absence of arc capacities in the network, we will show in theorem 3 that a unique Nash-
Cournot equilibrium always exists. This equilibrium is found when all generators’ simultaneously
maximize their respective profits as a function of their injection.

We first calculate the price at all nodes, πU
n (q), from equation (6), where U is the decomposi-

tion for which NU = N and BU = ∅, (as the lines have infinite capacity this is the only feasible
decomposition).

Now, instead of using πU
n , it is helpful to define a modified (finite) price function:

π̂U
n (q) =

∑

i∈N

di −
∑

i∈N

qi

∑

i∈N

ai

, (9)

and show that with this price function a unique equilibrium exists. Observe that π̂U
n is a linear

function of qn, in contrast to πU
n defined in (6). However, we will show (in theorem 3) that the

equilibrium with prices π̂U
n is also a unique equilibrium in the game where prices are πU

n .
Generator n’s profit function in this modified game is

ρ̂U
n = qn





∑

i∈N

di −
∑

i∈N

qi

∑

i∈N

ai

− cn



 .
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This modified Cournot game where all generators are maximizing their profit function with the
restriction q ≥ 0 can be written as the following linear complementarity problem (LCP),

0≤
2qn +

∑

i∈N\{n}

qi −
∑

i∈N

di

∑

i∈N

ai

+ cn ⊥ qn ≥ 0, ∀n∈N .

This can be written in the form,

0≤Mq + b ⊥ q ≥ 0, (10)

where

M =
I|N|+J|N|

∑

i∈N
ai

and b =−
∑

i∈N
di

∑

i∈N
ai

e+ c,

and I|N | is the identity matrix and J|N | is a square matrix of ones, each having |N | rows.
By theorem 3.1.6 from Cottle et al. (1992), we are guaranteed that the LCP given in (10) has a

unique solution, since M is a symmetric positive definite matrix. The solution to this LCP is the
unique unconstrained equilibrium, qU . For example, in the case where all generators are generating
a positive amount, the equilibrium injection for the generator at node n will be of the form:

qU
n =

∑

i∈N

di +
∑

i∈N

ci

∑

i∈N

ai

|N |+1
− cn

∑

i∈N

ai.

Lemma 8. Any equilibrium to the Cournot game with prices πU defined by (6) for δ = U , has
πU ≥ 0.

Proof. If any generator injects 0 units of electricity then their profit will be 0, therefore any
equilibrium must satisfy the condition that every generator’s profit must be greater than or equal
to 0. Hence at equilibrium we must have either πU ≥ 0 or qi = 0, ∀i∈N . This can be shown easily
by observing that qi > 0 and πU < 0 would lead to a negative profit. For the potential equilibrium
where qi = 0, ∀i∈N , we can calculate

πU =











∑

i∈N
di

∑

i∈N
ai

,
∑

i∈N

di ≥ 0,

−∞,
∑

i∈N

di < 0,

which will be positive so long as
∑

i∈N

di > 0, which is true by assumption. �

Theorem 3. Any equilibrium in the Cournot game with prices πU defined by (6) is also an equi-
librium in the game with prices π̂U defined by (9).

Proof. Let qU be an equilibrium in the game with prices πU . From lemma 8 we have that πU

is non-negative at equilibrium. Now consider the same equilibrium point but now with prices π̂U .
Observe that any deviation qn for generator n that results in π̂U

n ≥ 0 is not profitable for n, since
in this case π̂U

n = πU
n and qU is an equilibrium. Alternatively, if it results in π̂U

n < 0 then ρ̂U
n < 0 so

it is also not a profitable deviation. Hence there is no incentive to deviate from the equilibrium qU

when prices are given by π̂U
n . �

From theorem 3 we know that the unique solution to the LCP given by equation (10) is the
unique Cournot equilibrium in the game with the price function πU . We will refer to this equilibrium
as the unconstrained equilibrium, qU .



Downward, Zakeri, and Philpott: On Cournot Equilibria in Electricity Transmission Networks

14 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

We now derive conditions on the line capacities that ensure that the strategies defined by the
solution to (10) remain an equilibrium when line capacities are present. Our approach is to show
that given the unconstrained equilibrium, no generator has any incentive to change its strategy.

Suppose then that each arc ij has a capacity Kij. We first need to ensure that the line flows in
the unconstrained equilibrium (fU

ij ) are supported. For this, the necessary and sufficient conditions
are

Kij ≥
∣

∣fU
ij

∣

∣ . (11)

In what follows we will derive further conditions which are necessary and sufficient to ensure that no
generator has incentive to deviate from the unconstrained equilibrium. These conditions together
with (11) ensure the existence of the unconstrained equilibrium.

First, note that because of the concavity of the residual demand curve faced by generator n when
qn > qU

n (see figure 1) there is no incentive for generator n to deviate to a quantity higher than qU
n .

Therefore we only need to consider deviations in the range 0 < qn < qU
n .

Since any withholding by generator n will not improve its profit unless some line becomes con-
gested, we investigate all possible congested states of the network by considering all decompositions
δ ∈Dn. Each decomposition δ, has an associated residual demand curve. We consider the residual
demand curve associated with δ and find the point (qδ∗

n , πδ∗
n ) that maximizes the profit ρδ

n, for the
generator at node n. Although not all decompositions will occur as a consequence of withholding
at node n, at least one of them will correspond to the congested state of the network when qn = qδ∗

n .
Deviating so as to congest lines corresponding to decomposition δ gives the following profit

function:

ρδ
n = qδ

n

(

πδ − cn

)

=



















qδ
n





∑

i∈Nδ

di−qδ
n−

∑

i∈Nδ\{n}
qU
i −

∑

ij∈Bδ

Kij

∑

i∈Nδ

ai
− cn



 ,
∑

i∈Nδ

di − qδ
n −

∑

i∈Nδ\{n}

qU
i − ∑

ij∈Bδ

Kij ≥ 0,

−∞,
∑

i∈Nδ

di − qδ
n −

∑

i∈Nδ\{n}

qU
i − ∑

ij∈Bδ

Kij < 0.

There is no incentive to deviate to a point yielding a negative price, we will therefore only consider
deviations such that

∑

i∈Nδ

di − qδ
n −

∑

i∈Nδ\{n}

qU
i −

∑

ij∈Bδ

Kij ≥ 0.

This yields the following optimization problem for generator n:

max qδ
n





∑

i∈Nδ

di−qδ
n−

∑

i∈Nδ\{n}
qU
i −

∑

ij∈Bδ

Kij

∑

i∈Nδ

ai
− cn





s.t. 0≤ qδ
n ≤ ∑

i∈Nδ

di −
∑

i∈Nδ\{n}

qU
i − ∑

ij∈Bδ

Kij

This is a maximization problem with a strictly concave objective function, so the following KKT
conditions are necessary and sufficient to determine the unique solution.

0≤
2qδ

n +
∑

i∈Nδ\{n}

qU
i − ∑

i∈Nδ

di +
∑

i∈Bδ

Kij

∑

i∈Nδ

ai

+ cn +µ ⊥ qδ
n ≥ 0,

0≤
∑

i∈Nδ

di − qδ
n −

∑

i∈Nδ\{n}

qU
i −

∑

i∈Bδ

Kij ⊥ µ≥ 0.
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As we are looking for a solution which yields a positive profit, we require that qδ
n > 0 and πδ

n > 0.
These conditions imply that any solution leading to a profitable deviation must yield µ = 0 and

2qδ∗
n +

∑

i∈Nδ\{n}

qU
i − ∑

i∈Nδ

di +
∑

i∈Bδ

Kij

∑

i∈Nδ

ai

+ cn = 0.

This gives

qδ∗
n =

1

2





∑

i∈Nδ

di −
∑

i∈Nδ\{n}

qU
i −

∑

ij∈Bδ

Kij − cn

∑

i∈Nδ

ai



 , (12)

and

πδ∗ =

∑

i∈Nδ

di − qδ∗
n − ∑

i∈Nδ\{n}

qU
i − ∑

ij∈Bδ

Kij

∑

i∈Nδ

ai

=
qδ∗

n
∑

i∈Nδ

ai

+ cn. (13)

For feasibility, we require that qδ∗
n ≥ 0. (The upper bound constraint is automatically satisfied by

qδ∗
n , defined by (12).) Solving for the deviation profit gives

ρδ∗
n =

(qδ∗
n )

2

∑

i∈Nδ

ai

. (14)

There is incentive to deviate to this decomposition only if

ρδ∗
n > ρU

n and qδ∗
n ≥ 0.

The complement of this gives sufficient conditions under which there is no incentive to deviate to
this decomposition, namely

ρU
n ≥ ρδ∗

n or qδ∗
n < 0.

The first inequality is

ρU
n ≥ ρδ∗

n

which, from (14), gives

ρU
n

∑

i∈Nδ

ai ≥
(

qδ∗
n

)2
,

yielding

−
√

ρU
n

∑

i∈Nδ

ai ≤ qδ∗
n ≤

√

ρU
n

∑

i∈Nδ

ai.

The union of this condition with qδ∗
n < 0 gives

qδ∗
n ≤

√

ρU
n

∑

i∈Nδ

ai,
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which with (12) gives

√

ρU
n

∑

i∈Nδ

ai ≥
1

2





∑

i∈Nδ

di −
∑

i∈Nδ\{n}

qU
i −

∑

ij∈Bδ

Kij − cn

∑

i∈Nδ

ai



 .

This yields the following inequality on the line capacities Kij:

∑

ij∈Bδ

Kij ≥
∑

i∈Nδ

di −
∑

i∈Nδ\{n}

qU
i − cn

∑

i∈Nδ

ai − 2

√

ρU
n

∑

i∈Nδ

ai. (15)

If we impose inequalities analogous to (15) for all nodes n and for all possible decompositions
δ ∈ Dn, we have a set of sufficient conditions that guarantees that there is no incentive for any
generator to deviate from the unconstrained Nash-Cournot equilibrium. We call the set of arc
capacities that satisfy these inequalities along with the conditions given by (11) the competitive
capacity set.

The set of constraints defining the competitive capacity set is also necessary. That is, for any
combination of arc capacities {Kij}ij∈A that lie outside the competitive capacity set, either the arc
capacities are not large enough to support the equilibrium flows, or there exists a generator who
has an incentive to deviate from the unconstrained Cournot equilibrium. To see this, observe that
if any inequality in (15) is violated, then there is a generator n and a decomposition δ ∈Dn giving

ρδ∗
n = qδ∗

n

(

πδ
n − cn

)

> ρU
n .

Now by theorem 1 an injection of qδ
n < qU

n yields a price

π∗
n = max

δ∈Dn

πδ
n,

and so the profit actually made by generator n injecting qδ
n (while others inject qU

i ) is

ρn = qδ∗
n (π∗

n − cn)≥ ρδ∗
n > ρU

n ,

showing that generator n can deviate profitably from qU
n .

Note that there is a trivial set of constraints on the capacities that constitute sufficient condi-
tions for the existence of the unconstrained Nash-Cournot equilibrium. This set is given by the
inequalities

∑

ij∈Bδ

Kij ≥
∑

i∈Nδ

di −
∑

i∈Nδ\{n}

qU
i , ∀δ ∈Dn, ∀n∈N .

These ensure that no decomposition has a positive price, hence there can be no incentive for any
generator to deviate. Furthermore note that this characterization is weaker than (15). This is clear,
because if cn = 0 then ρU

n > 0, therefore we have that:

cn

∑

i∈Nδ

ai +2

√

ρU
n

∑

i∈Nδ

ai > 0.

Hence the inequalities given by (15) give smaller right-hand sides, and thus a larger competitive
capacity set, than the trivial set of constraints above.
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Figure 4 Three-node radial network.
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Figure 5 Competitive capacity set (given by unshaded region).

K12/MW

K
2
3
/M

W

200

200

Example To illustrate the competitive capacity set, consider the three node example shown in

figure 4. This has identical fringes with slope 1 at all nodes, and zero marginal cost for each

generator. The unconstrained equilibrium is

qU
1 = qU

2 = qU
3 = 150, πU = 50, fU

12 = 100, fU
23 =−20.

The competitive capacity set (shown by the unshaded region in figure 5) is defined by the

intersection of the following constraints.

K12 ≥ 105.05,

K23 ≥ 25.05,

K12 +K23 ≥ 146.79.

Generators have an incentive to deviate when the line capacities do not lie in this set. For

example, consider the capacities K12 = 106 and K23 = 26. At this point the condition that the

sum of the capacities must exceed 146.79 is violated, and we find that the profit for generator 2

to deviate by congesting both lines towards node 2 is 8836, whereas its equilibrium profit is only

7500. This means that generator 2 has incentive to deviate, hence qU is not an equilibrium.
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3. Extension to DC load flow models

3.1. Networks with loops

The above results apply to tree networks which have the crucial property that the set of congested

lines increases as a single generator withholds at some node. Most real electricity networks have

loops which are required for reliability. When loops are present the flows of electricity in the network

arrange themselves according to Kirchhoff’s laws for DC load flow. This is usually modelled using

a voltage phase angle θi at each node i and a line reactance lij. The flow in ij must then satisfy

lijfij = θi − θj.

This gives the following version of the dispatch model.

P (q) := min
∑

i∈N

1
2ai

xi
2

s.t. −xi +
∑

j,ij∈A

fij −
∑

j,ji∈A

fji = qi − di ∀i∈N

−Kij ≤ fij ≤Kij ∀ij ∈A

lijfij = θi − θj ∀ij ∈A.

Observe that for radial networks (with no loops), we may remove the voltage phase angles and

their constraints from the DC load flow formulation, as we did in section 2.

With the addition of loops to the dispatch problem, lemma 6 is no longer valid, as there is no

longer a single path between every pair of nodes. We show later that theorem 2, which states

that the residual demand curve for generator n is convex for qn < qU
n , is no longer true. Without

this result, the set of arc capacities that are necessary and sufficient for the existence of the

unconstrained equilibrium are more difficult to compute. We must now enumerate all possible ways

that the complementarity conditions for P(q) with loops can be satisfied. These will be referred

to as KKT regimes. For each generator n and KKT regime r we compute the set of arc capacities

precluding a profitable deviation from the unconstrained Cournot equilibrium qU , namely

Kr
n = {K | there is no feasible qn in KKT regime r with profit ρn(qn) > ρn(qU

n )}.

The set of arc capacities that are necessary and sufficient to ensure generator n cannot unilaterally

increase its profit above what would have been achieved in the unconstrained equilibrium can

therefore be written as
⋂

r

Kr
n.

We will refer to this as the non-deviation set for generator n.

Instead of the set of arc capacities that are necessary and sufficient for the existence of the

unconstrained equilibrium being determined by a number of linear inequalities (as is the case for

radial networks), the set must be constructed from the intersection of the non-deviation sets for

all generators, which may yield a non-convex result. Observe that the calculation of this set is

much more cumbersome than its counterpart for radial networks, since there are
(

2|N | × 3|A|
)

− 1

possible KKT regimes, which would represent a significant computational task. As an illustration
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Figure 6 Three-node network; two lines have capacity constraints.
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of this procedure, consider the three-node network shown in figure 6. When voltage phase angles
are eliminated, we have the following dispatch problem:

min 1
2a1

x1
2 + 1

2a2
x2

2 + 1
2a3

x3
2

−x1 + f12 + f13 = q1 − d1 [π1]
−x2 − f12 + f23 = q2 − d2 [π2]
−x3 − f13 − f23 = q3 − d3 [π3]
l12f12 − l13f13 + l23f23 = 0 [λ]

|f12| ≤K12 [η1
12, η

2
12]

|f23| ≤K23 [η1
23, η

2
23]

x1, x2, x3 ≥ 0.

As the above problem is convex, we can replace it with its equivalent KKT system, shown below:

−x1 + f12 + f13 = q1 − d1

−x2 − f12 + f23 = q2 − d2

−x3 − f13 − f23 = q3 − d3

l12f12 − l13f13 + l23f23 = 0

π1 −π2 + l12λ+ η1
12 − η2

12 = 0

π1 −π3 − l13λ = 0

π2 −π3 + l23λ+ η1
23 − η2

23 = 0

0≤ x1 − a1π1 ⊥ x1 ≥ 0

0≤ x2 − a2π2 ⊥ x2 ≥ 0

0≤ x3 − a3π3 ⊥ x3 ≥ 0

0≤K12 − f12 ⊥ η1
12 ≥ 0

0≤K12 + f12 ⊥ η2
12 ≥ 0

0≤K23 − f23 ⊥ η1
23 ≥ 0

0≤K23 + f23 ⊥ η2
23 ≥ 0.

The unconstrained equilibrium (assuming zero marginal cost) for this problem is given by

qU
1 = qU

2 = qU
3 =

d1 + d2 + d3

4
.
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Figure 7 Residual demand curve for three-node network.

qU

1

price

injection

Figure 8 (i) Combined deviation set for generator 1. (ii) Zoomed in.
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Now by setting q2 = qU
2 and q3 = qU

3 , we can construct the residual demand curve for generator
1, for a given K12 and K23, by considering different KKT regimes; each regime corresponds to a
different piece of the residual demand curve. Note that this curve, shown in figure 7, is not convex
for q1 ≤ qU

1 .
We can find the non-deviation set for generator 1, for the situation where a1 = 1.44, a2 = 3.4,

a3 = 1.44, d1 = 3.04, d2 = 0.76, d3 = 1.5, l12 = 0.178, l13 = 0.104, l23 = 0.104, by enumerating Kr
1 for

all r. The intersection of these sets is the non-deviation set for generator 1, which is shown as the
unshaded region in figure 8 (i). If we zoom in on the corner of this set, shown in 8 (ii), we can see
that the non-deviation set for this generator is not convex.

3.2. Networks with losses

Up to this point this paper has been concerned with networks in which the transmission lines
have no losses. Here we digress briefly to consider this issue. Thermal losses in electricity trans-
mission networks are usually modelled as quadratic functions of the flow on the line, which can be
represented in the dispatch model as follows.

−xi +
∑

j,ij∈A

fij −
∑

j,ji∈A

(fji − rfji
2)≤ qi − di ∀i∈N



Downward, Zakeri, and Philpott: On Cournot Equilibria in Electricity Transmission Networks

Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 21

Observe that the flow conservation constraint is now an inequality implying the option of free

disposal of energy at any node (see e.g. Philpott and Pritchard (2004)). This is required to ensure

a convex dispatch problem. In most circumstances (e.g. when electricity prices are positive) this

free disposal will be zero at optimality. We will assume that this is the case in our discussion here.

The presence of quadratic losses creates a limit on how much power can be sent along the

line; this limit is due to the marginal loss becoming equal to 1, so that any increment of flow

sent disappears. This capacity limit decreases as the loss coefficient r increases. It is asserted by

Borenstein et al. (2000) that for large enough values of r, the unconstrained equilibrium will not

exist due to the effects of the implied capacity limit. We will show, in a two-node symmetric

example, that an equilibrium always exists regardless of the magnitude of the loss coefficient r. We

model the losses as they are modelled by Borenstein et al. (2000) (the losses are incurred at the

node that is receiving power, i.e. the losses are proportional to the square of sent power)

In this setting, equations (16) below provide the candidate Cournot equilibrium quantities.

q1 = q2 = qC =
3+6r−

√
9+4r +4r2

8r
, (16)

π1 = π2 =
2r− 3+

√
9+4r +4r2

8r
,

f = 0.

The optimal revenue for each generator is

R̄ = π1q
C

=
1

8
− 9

32r2
− 1

4r
+

3
√

9+4r +4r2

32r2
+

√
9+4r +4r2

16r
.

We will show in what follows that for any value of r, no generator has incentive to change their

offer from the candidate equilibrium quantity qC . As this is a symmetric example it suffices to

show that generator 1 has no incentive to deviate from injecting the equilibrium quantity qC when

generator 2 offers in q2 = qC . There are two types of deviation for generator 1, injecting more than

qC and injecting less than qC . The direction of flow along the line will be different for these two

cases therefore they must be considered separately. We assume that the line has infinite capacity.

Injecting more electricity If generator 1 were to deviate from the candidate equilibrium by inject-

ing more electricity at node 1, then a flow f ≥ 0 on the line from node 1 to 2 will result. This gives

the dispatch problem:

min 1
2
x1

2 + 1
2
x2

2

s.t. −x1 + f ≤ q1 − 1 [π1]
−x2 − f + rf2 ≤ q2 − 1 [π2]

x1, x2 ≥ 0,

which has the following optimality conditions when prices are positive.

−π1 + f = q1 − 1

−π2 − f + rf2 = q2 − 1

π1 −π2 (1− 2rf) = 0

π1, π2 ≥ 0.
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For generator 1 to have a profitable deviation, we require π1 > 0, which from the optimality con-
ditions above, implies that π2 > 0 and (1− 2rf) > 0. The maximum revenue that generator 1 can
obtain by increasing his offer from qC is given by the optimal value of

S (q2) : max q1π1

s.t. −π1 + f = q1 − 1
−π2 − f + rf2 = q2 − 1
π1 − (1− 2rf)π2 = 0

π1, π2 ≥ 0.

We can remove the inequality constraints on the prices and replace them by 0≤ f ≤ 1
2r

to give the
following relaxation of S (q2)

Ŝ (q2) : max q1π1

s.t. −π1 + f = q1 − 1
−π2 − f + rf2 = q2 − 1
π1 − (1− 2rf)π2 = 0

0≤ f ≤ 1
2r

.

(17)

Let q2 = qC , the equilibrium quantity defined by (16). Then the first 3 constraints in (17) may be
expressed as

q1 = 1+ f +
(1− 2rf)

(

3− 2r +8rf − 8r2f2 −
√

9+4r +4r2
)

8r
,

π1 =−(1− 2rf)
(

3− 2r +8rf − 8r2f2 −
√

9+4r +4r2
)

8r
,

and

π2 =−3− 2r +8rf − 8r2f2 −
√

9+4r +4r2

8r
.

The objective function of Ŝ (q2) becomes

R̂(f) =
1

8
− 9

32r2
− 1

4r
+

3
√

9+4r +4r2

32r2
+

√
9+4r +4r2

16r

+

(

11

8
+

r

2
− r2

2
−

(

9

8
+

1

4
r

)√
9+4r +4r2

)

f2

+
(

3r +2r2 +2r
√

9+4r +4r2

)

f3

+
(

−12− 2r3 − r2
√

9+4r +4r2

)

f4

+12r3f5 − 4r4f6,

which we seek to maximize over f ∈ [0, 1
2r

].

It is easy to verify that R̂(f) over this range has a unique global maximum at f = 0 with value

R̄ > 0. This is because R̂( 1
2r

) = 0, and dR̂
df

∣

∣

∣

f=0
= 0, d2R̂

df2

∣

∣

∣

f=0
< 0, and dR̂

df
has at most one zero in

(0, 1
2r

). It follows that the optimal revenue R(f) from any deviation q1 > qC
1 giving flow f > 0

satisfies

R(f)≤ R̂(f)≤ R̂(0) = R̄.
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Injecting less electricity If generator 1 were to deviate from the candidate equilibrium by inject-
ing less electricity at its node, a flow on the line from node 2 to 1 will be induced. This results in
the dispatch problem:

min 1
2
x1

2 + 1
2
x2

2

s.t. −x1 + f + rf2 ≤ q1 − 1 [π1]
−x2 − f ≤ q2 − 1 [π2]

x1, x2 ≥ 0,

which has again the following optimality conditions when prices are positive.

−π1 + f + rf2 = q1 − 1

−π2 − f = q2 − 1

π1 (1+2rf)−π2 = 0

π1, π2 ≥ 0.

For generator 1 to have a profitable deviation when q2 = qC we require π1 > 0. We also require
f >− 1

2r
for feasible solutions. As above consider the relaxation

Ŝ (q2) : max q1π1

s.t. −π1 + f + rf2 = q1 − 1
−π2 − f = q2 − 1

π1 (1+2rf)−π2 = 0
0≤−f ≤ 1

2r

Once we substitute q2 = qC and eliminate variables q1, π1, and π2, we have that

R̂(f) = − 1

64r2 (1+2rf)
2 [18+16r− 8r2 − (6+4r)

√
9+4r +4r2

+
(

72+64r− 32r2 − (24+16r)
√

9+4r +4r2

)

rf

+
(

200+80r− 24
√

9+4r +4r2

)

r2f2

+
(

240− 32r− 16
√

9+4r +4r2

)

r3f3

+128r4f4].

As in the previous case we have that dR̂
df

∣

∣

∣

f=0
= 0, and d2R̂

df2

∣

∣

∣

f=0
< 0, and dR̂

df
> 0 in (− 1

2r
,0). It follows

that R̂(f) has a unique global maximum over (− 1
2r

,0] at f = 0 with value R̄ > 0. It follows that
the optimal revenue R(f) from any deviation q1 < qC

1 giving flow f < 0 satisfies

R(f)≤ R̂(f)≤ R̂(0) = R̄.

As the generators are symmetric, a Nash-Cournot equilibrium in this example always exists
regardless of the magnitude of the loss coefficient on the line.

4. Application to the New Zealand market

In this section, we will calculate the minimum transfer capacities to ensure the existence of uncon-
strained Cournot equilibria in a simplified representation of the New Zealand electricity market.
This work was part of a project undertaken by New Zealand’s grid owner Transpower seeking to
quantify the future competition benefits (in 2010, 2015 and 2020) of expanding the capacity of the
transmission line in the upper part of New Zealand’s North Island (between locations Whakamaru
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Figure 9 Two-node network.

OTA WKM

Table 1 Strategic generators and their capacities.

Capacity (MW)
Generator Location 2010 2015 2020

Otahuhu B OTA 390 390 390
Huntly + E3P OTA 1413 1413 1413
Waikato Hydro WKM 776 776 776
Taranaki Combined Cycle + New Plymouth WKM 665 665 665
Clutha Dam WKM 700 790 790
Waitaki System WKM 2718 3008 3183

Table 2 Aggregated expected
wind and geothermal power.

Wind/Geothermal (MW)
Node 2010 2015 2020

OTA 10 70 70
WKM 701 1081 1081

and Otahuhu). The New Zealand Electricity Commission (that regulates the electricity industry)
uses a form of cost-benefit analysis called the Grid Investment Test (2006) to prioritize new invest-
ments in transmission capacity, and competition benefits can be included in this analysis if they
can be estimated.

In order to perform a cost-benefit analysis of grid upgrades, it is necessary to consider multiple
demand scenarios (for example peak and off-peak) each with some frequency or likelihood. It
is straightforward to construct a competitive capacity set which ensures that the unconstrained
Nash-Cournot equilibrium exists for all scenarios; in fact this set can be shown to be polyhedral.
However, a policy which ensures that the line capacities lie in this set may be too conservative. A
more practical approach could involve assigning some penalty to an expansion plan falling outside
the competitive capacity set for a particular demand scenario. However, for purposes of illustration,
we focus here on only one peak demand scenario and its corresponding competitive capacity set.

The transmission system in our model is a two-node network, with one node (OTA) at Otahuhu
and the other node (WKM) at Whakamaru.

In order to apply this model, we need to categorize generators into one of three types: strategic;
part of a competitive fringe; or assumed to offer in however much they can produce at $0 (e.g. wind
/ geothermal). We assume there are six major strategic generators in the New Zealand market,
and have located them at either OTA or WKM based on their position in the New Zealand grid,
as shown in Table 1.

As plant outputs are limited to their generation capacities, we need to use a modified approach
to analyze the situation, and remove the limitation of one generator per node. Wind farms and
geothermal plants are assumed to have $0 short-run marginal costs and have no ability to act
strategically. We therefore subtract their production directly from the demand. In the case of wind
farms we assume that on average they are running at 40% of capacity and that geothermals are
running at 100% of capacity. The expected amount of wind power and geothermal power available
is shown in Table 2.
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Table 3 Aggregated demand
forecasts.

Demand Forecast (MW)
Node 2010 2015 2020

OTA 2288 2631 2987
WKM 5005 5447 5830

Table 4 Short-run marginal costs.

Marginal Cost ($/MWhr)
Fuel Type 2010 2015 2020

Gas 56.56 63.61 78.42
Coal 46.35 48.98 51.60

The demand and generation assumptions have been derived from scenarios developed by the
New Zealand Electricity Commission and Transpower; updated fuel costs (gas and coal) have been
derived from the New Zealand Ministry of Economic Development’s latest Energy Outlook New
Zealand Ministry of Economic Development (2007). The demand forecast we used is shown in
Table 3.

The short-run marginal costs (excluding the proposed carbon charge) for gas and coal plants,
that were used in the model, are shown in Table 4.

All remaining generators form part of a competitive fringe which offers a linear supply function.
There is one competitive fringe at each node, and the prices paid to the generators are determined
by their slopes. The slope at the OTA node is a1 and the slope at the WKM node is a2. We choose
a1 = α× a and a2 = (1−α)× a, for a range of α and a.

The value of a determines the price paid to all generators in the unconstrained equilibrium, and
the value of α affects the incentives generators have to deviate from the unconstrained equilibrium.
For example, if the fringe slope at one node is small and the fringe slope at the other node is
large, then the generators located at the node with the smaller fringe slope will be more willing to
attempt to congest the line toward themselves to get a higher price.

When α is small, we require a large line to prevent the large generator Huntly at OTA from
withholding too much. However, when α is large the Waitaki System at the WKM node sets the
size of the line. A plot of the required line size as a function of α for a = 12.0 is shown as the solid
line in figure 10.

Huntly is New Zealand’s largest thermal generator, and contributes significantly to the base load.
Given that it will typically be contracted for a high proportion of its generation, it is instructive
to examine the situation when Huntly chooses not to deviate from its unconstrained equilibrium
generation. A plot of the required line size as a function of α for a = 12.0 is shown as a dashed line
in figure 10. With Huntly constrained, it is the Otahuhu B plant that sets the size of the line when
α is very small. However, since it is a smaller plant than Huntly it cannot always take advantage
of the situation. It turns out that in this situation, for 0.04 ≤ α ≤ 0.47 the size of line required is
equal to the flow on the line in equilibrium.
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Figure 10 Required capacity on OTA–WKM line in 2010.
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