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Abstract

We present a capacity expansion model for deciding the new electricity generation and trans-

mission capacity to complement an existing hydroelectric reservoir system. The objective is to

meet a forecast demand at least expected cost, namely the capital cost of the investment plus the

expected discounted operating cost of the system. The optimal operating policy for any level

of capacity investment can be computed using stochastic dual dynamic programming. We show

how to combine a multistage stochastic operational model of the hydro system with a capacity

expansion model to create a single model that can be solved by existing open-source solvers

for multistage stochastic programs without the need for customized decomposition algorithms.

We illustrate our method by applying it to a model of the New Zealand electricity system and

comparing the solutions obtained with those found in a previous study.
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1. Introduction

Electricity systems around the world are transitioning to technologies with zero or near-zero

carbon emissions (Clarke et al., 2022). The most popular sources of renewable energy (wind and

solar) are either intermittent or diurnal and so some form of flexibility is required to match supply

and demand when the wind is not blowing or the sun is not shining. One option is thermal peaker

plants, which can quickly ramp up and down to balance supply and demand. Another option is

to store and discharge energy from some form of storage, which may be medium-term storage

in the form of hydro-reservoirs, or short-term storage in the form of batteries. Since future wind

and solar generation are uncertain, the optimal operation of storage is the solution to a stochastic

control problem of some complexity. A third option is to invest in interconnectors, through which

neighbouring power systems can share excess electricity and flexibility.

In addition to the intermittency challenges, isolated hydro-dominated energy systems like

Iceland, Brazil, and New Zealand, face a “dry-year” risk, in which a sustained period of low

inflows leaves insufficient water in the reservoirs to meet demand. To compensate, the system

must either be willing to periodically shed demand at high cost (and social interruption), build

and operate thermal peakers as a back-up source of energy, or over-build intermittent renewable

capacity to ensure sufficient supply. In each case, extra transmission may be needed to move

power from the newly built generation to demand loads. The main contribution of this paper is

a model which can be used to correctly size the investment and analyse the operation of each

option.

A key challenge when analysing the operation of a hydro-dominated system is the trade-off

between the value of using the water stored in a reservoir in the current period, compared with

the value of keeping the water for a future period. Most commonly, the operation of the system is

modelled as a multistage stochastic program and solved using stochastic dual dynamic program-

ming (SDDP) (Pereira & Pinto, 1991). One such example is the Brazilian energy system, which

has used SDDP to plan its operation for over 25 years (Maceira et al., 2008, 2018). Because

of the use of both hydro and thermal generation, the problem is often called the hydro-thermal

scheduling problem.

A number of authors have augmented multistage stochastic operational models with capacity

expansion decisions. As a brief sampling of the literature, we point to the following works

(Newham, 2008; Rebennack, 2014; Wu et al., 2016; PSR-Inc., 2023; Bruno et al., 2016; Thomé
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et al., 2019; Lara et al., 2020; Bødal et al., 2022; Jacobson et al., 2023). The literature can be

categorized into two broad streams, which we refer to as static and dynamic investment models.

In static investment models, the capacity investment and operation are treated as a two-stage

problem, in which the agent chooses a level of new capacity investment, and then evaluates the

operation of the energy system with the investment complete. Static models focus on the ideal

end-state of the energy system, but not the timing or sequence of decisions that are required to

get there. In its simplest form, a static model enumerates all potential investments and evaluates

their capital and operating costs before choosing the best. More sophisticated static models treat

the operation of the energy system as the subproblem of a two-stage model that has first-stage

capacity investment decisions (modelled by binary or continuous variables) optimized using a

form of decomposition. The second-stage is solved, often using SDDP, to guide the solution

of the first stage. A unifying feature of static models is that they decompose the investment

and operational decisions, and that their operational problems model a finite time horizon. The

use of a finite-horizon model to evaluate the steady-state operational cost of the system forces

models to use excessively long horizons to mitigate end-of-horizon effects. Moreover, because

these models use decomposition, the authors each code a customized algorithm to solve their

particular problem.

Dynamic investment models co-optimize the capacity investment and operation of the energy

system over time. In contrast to static models, changes in capacity can occur more than once over

the time horizon. Dynamic models are usually formulated as monolithic multistage stochastic

programs, typically with integer decisions for the investments. Examples of such models are

Dominguez et al. (2016), Liu et al. (2017), and Backe et al. (2022). Because of the difficulty

in solving large instances, various approximations or heuristics are used to generate sub-optimal

solutions. A unifying feature of dynamic models is that they model a finite time horizon.

In this paper, we propose a static capacity investment model that co-optimizes the strategic

level investment of new capacity to minimize the steady-state operational cost of how the energy

system should be operated in the face of uncertain inflows and quantity of variable renewable

energy. Our model is based on the policy graph modelling framework of Dowson (2020) and can

be solved using existing open-source multistage stochastic programming solvers such as SDDP.jl

(Dowson & Kapelevich, 2021) without the need for the practitioner to code their own special-

ized decomposition algorithm. The single, co-optimized, infinite-horizon model formulation is
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the main novel contribution of this paper. We apply our model to a case study that investigates the

capacity expansion of variable renewable energy in the New Zealand electricity system. We con-

sider different investment scenarios, and to verify that the method works, we compare our optimal

solutions with those computed by enumeration by Philpott & Downward (2023). The ability to

solve our model without the need to implement custom decomposition algorithms is particularly

important, because it means that our approach can easily be applied by other researchers to other

energy systems and case studies. Thus, this paper also serves as a demonstration of the flexibility

of the policy graph modelling approach and of SDDP.jl.

The paper is laid out as follows. In the next section we describe the proposed method for the

integration of capacity investments in SDDP.jl. In Section 3 we describe how we model wind

investment in SDDP.jl. In Section 4 we give a short description of the New Zealand case study,

and compare the results from our investment model and previous work in Section 5, before we

conclude in Section 6. Appendix A gives the full formulation of the SDDP stage problem and

Appendix B provides parameters for the generation plants modelled in the case study. More

detailed results from the case study are presented in Appendix C and Appendix D.

2. Modelling investments using a policy graph

In this section we introduce the hydro-thermal scheduling problem, explain how to model

the finite- and infinite-horizon variants as a policy graph, and expand the policy graph to include

investment decisions.

The classical version of the hydro-thermal scheduling model is a finite-horizon discrete-time

stochastic optimal control problem. The stages of this problem are indexed 1, 2, . . . ,T . The

states of this problem are reservoir levels measured at the end of each stage (denoted X) and

actions (denoted U) are water releases through generating turbines, flows through spill and river

arcs, dispatchable non-hydro generation, and load reduction. In each stage, each reservoir r

experiences a random inflow ωr(t). The upper-case notation used for X and U indicate that these

are also random variables.
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The general formulation of this hydro-thermal scheduling problem (HTP) is as follows:

HTP : min E[
∑T

t=1 Ct(X(t),U(t))]

s.t. X(t) = ft(X(t − 1),U(t), ω(t)) t = 1, 2, . . . ,T

X(0) = x̄

U(t) ∈ Ut(x(t − 1), ω(t)) t = 1, 2, . . . ,T

X(t) ∈ Xt t = 1, 2, . . . ,T.

Here, Ct(X(t),U(t)) is the cost of meeting demand (possibly with load shedding) in stage t

from dispatchable generation. The finite horizon ignores actions after stage T , but future costs

and constraints on X(T ) can be modelled by suitable choices of CT (X(T ),U(T )) and XT . Note

that these exogeneous modelling choices will affect the optimal solution of HTP. We revisit this

issue below.

The transition function ft(X(t−1),U(t), ω(t)) maps the incoming state X(t−1) at the beginning

of stage t to a random outgoing state X(t) at the end of stage t. For example:

X(t) = ft(X(t − 1),U(t), ω(t)) = X(t − 1) + B · U(t) + ω(t),

where the matrix B maps the control flows U(t) to the change in reservoir level. The vector of

inflows ω(t) is assumed to have a finite probability distribution (drawn from the sample space

Ω(t)) that is independent of that in any previous stage. Observe that random variables X and U

are required to be measurable with respect to the history of the random inflow process, so they

must satisfy non-anticipative constraints that we have suppressed in the formulation.

The model HTP can be defined by a policy graph as described in Dowson (2020). The

policy graph defines the dynamic structure of the decision problem we are modelling, showing

how actions affect the state variables and how realizations of the random variables are revealed

over time. The policy graph that represents HTP is shown in Figure 1.

SPt=1 ... SPt=T

Figure 1: The policy graph structure for HTP.

There are T stages with subproblems SPt, where each t is a time step when decisions are

made. The random variable ω(t) is shown as squiggly lines in the policy graph. Each subproblem

SPt has the following form:
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SPt(x(t − 1), ω(t)) : min
u(t),x(t)

Ct(x(t), u(t), ω(t))

s.t. x(t) = ft(x(t − 1), u(t), ω(t))

u(t) ∈ Ut(x(t − 1), ω(t))

x(t) ∈ Xt.

The need to choose a suitable terminal cost function CT can be mitigated by solving the

discounted infinite-horizon problem:

HTP −∞ : min E[
∑∞

t=1 ρ
tCt(X(t),U(t))]

s.t. X(t) = ft(X(t − 1),U(t), ω(t)) t = 1, 2, . . .

X(0) = x̄

U(t) ∈ Ut(x(t − 1), ω(t)) t = 1, 2, . . .

X(t) ∈ Xt t = 1, 2, . . . .

Infinite-horizon discounted cost models can be represented by policy graphs that contain

cycles. An example is shown in Figure 2. In each step, the probability of transitioning from node

t to t + 1 (or from node T to node 1) is ρ where ρ < 1. Most commonly, T is chosen so that

one loop of the graph represents one year, and the nodes within each loop allow for seasonality

in demand and inflows over the course of each year. Importantly, the subproblems SPt do not

change from the finite-horizon model, only the structure of the graph changes.

SPt=1 ... SPt=Tρ ρ

ρ

Figure 2: The policy graph structure for HTP −∞.

We can extend the HTP −∞ problem to include an investment variable uinv as follows:

INV −HTP −∞ : min cinv
⊤uinv + E[

∑∞
t=1 ρ

tCt(X(t),U(t))]

s.t. X(t) = ft(X(t − 1),U(t), ω(t)) t = 1, 2, . . .

X(0) = x̄

U(t) ∈ Ut(x(t − 1), uinv, ω(t)) t = 1, 2, . . .

X(t) ∈ Xt(uinv) t = 1, 2, . . . .
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Here uinv is the vector of new capacity that is installed before the start of stage t = 1. The newly

installed capacity modifies the feasibility set of the state variables Xt, and it may also modify the

feasibility set of the control variable Ut. Here cinv is the overnight investment cost I per unit of

uinv [$/MW], assuming that the invested capacity has an infinite lifetime. If the lifetime is finite,

say τ years, we assume that the capacity is reinvested every τ years and set:

cinv = I +
∞∑

i=1

I · βi·τ =
I

1 − βτ
.

The policy graph in Figure 2 can be amended to accommodate capacity expansion decisions

at the beginning of the infinite operating horizon. This gives the policy graph shown in Figure 3.

The decisions in SPinv determine the system capacities, and the decisions in SPt are operating

decisions optimizing the control of the resulting system over an infinite horizon.

SPinv SPt=1 ... SPt=Nρ ρ

ρ

Figure 3: The policy graph structure for INV −HTP −∞.

In order to pass the capacity decisions from SPinv into the cyclic policy graph, we add a

state variable, xinv, which is set by the investment control variable uinv. Subproblem SPinv is as

follows:
SPinv : min

uinv
cinv
⊤uinv

s.t. uinv ≥ 0

xinv(0) = uinv

The new xinv state variable changes the constraints of each subproblem SPt. For dispatchable

plants, investment increases the maximum output in any dispatch period. The same holds for

grid investments, where the maximum power flow on a transmission line is increased. The effect

of investment on the output of intermittent capacity such as wind or solar power is less straight-

forward. In the next section, we describe a methodology that approximates wind generation from

invested wind capacity for use in a medium term hydro-scheduling model.
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3. Modelling renewable investments in the subproblems

In the previous section we showed how capacity investments can be modelled in SDDP.jl

using a policy graph. In this section we show how to translate this investment decision into

capacity constraints on generation in each stage problem. When generation comes from inter-

mittent sources the constraints are stochastic. We illustrate how we approximate these constraints

using wind as an example. The same method will apply for solar power.

In each stage problem, wind generation wm(h, t) (MW from wind farm m in hour h for week

t of the year) is a decision variable that contributes to the electricity supply with a short-run

marginal cost equal to 0. The output of wind farm m in week t and hour h depends upon its

capacity xinv
m , but also the (random) amount of wind available at that time. This can be represented

using by a random factor λm,h,t(ωt) that limits the output through:

wm(h, t, ωt) ≤ λm,h,t(ωt) · xinv
m ,

where the inequality constraint gives that curtailment of wind generation is possible at zero cost.

In our model we approximate the distribution of λm,h,t(ωt) by an empirical distribution from

Y years of historical wind generation data. The wind farms for which these data are available

are grouped into geographical regions r, and λm,h,t(ωt) is assumed to be the same value λr,h,t(ωt)

for each wind farm m in region r. In any region r and hour h in week t, λr,h,t(ωt) can take

on one of Y values with equal probability. Each value in this distribution (corresponding to year

y ∈ {1, 2, . . . ,Y} ) is obtained by dividing the observed wind generation in year y in hour h in week

t in region r by the installed wind capacity in that region. This model assumes wind generation

in any hour is independent of that in the previous hour. This ignores the short-term temporal

dependence of wind generation from hour to hour that might become important if investment in

short-term storage were being considered. The standard approach (see e.g. Liu et al. (2017)) in

this case is to use “representative days” of wind generation, which model the dynamics at the

expense of introducing some perfect foresight into the decision making.

Since each weekly stage problem in the SDDP model is to be solved many times, hourly de-

mand and hourly wind generation are approximated by piecewise constant load duration curves.

The standard approach to estimating these assumes a level of wind capacity Kr for each region

r ∈ R and subtracts the wind generation λr,h,t(ωt)Kr from the demand Dr(h, t) in that region to
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give a net demand:

D̂r(h, t,Kr, ωt) = Dr(h, t) − λr,h,t(ωt)Kr,

for region r in hour h in week t corresponding to the wind in historical year ωt. Here λr,h,t(ωt) is

the load factor computed from historical wind generation in region r divided by capacity in year

ωt. Then total system net demand
∑

r∈R D̂r(h, t,Kr, ωt) is sorted to give a duration curve that is

approximated by load blocks b = 1, 2, . . . , B, each having constant net load equal to average net

load over the hours and historical years in its block.

It is easy to see that different choices of wind capacity Kr will produce different values of

net demand. Moreover the duration curve obtained by sorting
∑

r∈R D̂r(h, t,Kr, ωt) will sort the

observations from different hours and historical years into a possibly different order for each

choice of Kr. A brute-force approach to capacity optimization would enumerate all potential

choices of Kr, r ∈ R, and solve an SDDP model with this choice. In our model, the values of

Kr, r ∈ R are represented by state variables xinv, which means that they are optimized by SDDP

rather than enumerated ex-ante. This requires a different approach.

The first approximation that we make is to assume that Kr is a fixed proportion αr of system

wind capacity K, a single state variable that will be optimized by SDDP. This implies that net

demand in region r is:

D̂r(h, t, αrK, ωt) = Dr(h, t) − λr,h,t(ωt)αrK,

and total net demand for wind capacity K is:∑
r∈R

D̂r(h, t, αrK, ωt) =
∑
r∈R

Dr(h, t) −
∑
r∈R

αrλr,h,t(ωt)K.

Given a nominal level K̄ of wind capacity we compute
∑

r∈R D̂r(h, t, αrK̄, ωt) and sort to give

a duration curve that is approximated by load blocks b = 1, 2, . . . , B. Each load block b for week

t contains T (t, b) observations. We fix this number for each load block.

To model the load duration curve as K varies from K̄, we make a second approximation. To

understand how K affects the duration curve it is helpful to fix week t and write:

D̂(h, t,K, ωt) =
∑
r∈R

D̂r(h, t, αrK̄, ωt) −
∑
r∈R

αrλr,h,t(ωt)(K − K̄)

= X(h, ωt) −W(h, ωt)(K − K̄),
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where X(h, ωt) =
∑

r∈R D̂r(h, t, αrK̄, ωt) and W(h, ωt) =
∑

r∈R αrλr,h,t(ωt). Consider first the

highest load block b = 1 for week t, containing the T (1, t) largest values of X(h, ωt). As K

increases from K̄, the indices (h, ωt) ∈ b will remain the same but the average load will decrease

until a swap occurs when we reach a critical value K1, such that for K > K1 and some index

(hi, ωi
t) ∈ b:

X(hi, ωi
t) −W(hi, ωi

t)(K − K̄) < X(h j, ω
j
t ) −W(h j, ω

j
t )(K − K̄)

for (h j, ω
j
t ) < b, and we swap (h j, ω

j
t ) into block 1 and (hi, ωi

t) out of block 1. When this happens

we will have:

X(hi, ωi
t) −W(hi, ωi

t)(K1 − K̄) = X(h j, ω
j
t ) −W(h j, ω

j
t )(K1 − K̄)

so D̂(h, t,K, ωt) is continuous in K. (Observe that X and W are not continuous in K, since they

can both jump at K1.) Since wind investment reduces net demand, we have D̂(hi, t,K, ωi
t) is

decreasing in K, and:

X(hi, ωi
t) −W(hi, ωi

t)(K1 − K̄) = X(h j, ω
j
t ) −W(h j, ω

j
t )(K1 − K̄)

implies:

W(hi, ωi
t) > W(h j, ω

j
t ).

This implies that
∑

(h,ωt)∈1 D̂(h, t,K, ωt) is a convex decreasing piecewise linear function of

K. This enables us to model the effect of wind in block b = 1 using linear inequality constraints

(which is required for SDDP). Unfortunately the above analysis does not apply to the other

blocks. Indeed it can be shown that for the lowest demand block, B(t), we have
∑

(h,ωt)∈B(t) D̂(h, t,K, ωt)

is a concave decreasing piecewise linear function of K, which cannot be represented in SDDP

using linear inequality constraints.

Our approximation for week t takes the load blocks constructed for
∑

r∈R D̂r(h, t,K, ωt) for

five different values of K ranging from 1 to 5 GW, where each load block b is restricted to contain

exactly T (t, b) observations. (We set Y = 1 in our experiments meaning that ωt is ignored and∑B
b=1 T (t, b) = 168.) The observations (hours) that are in block b for capacity choice K are

denoted b(K). The average extra wind generation in this block is∑
h∈b(K) W(h, ωt)

T (t, b)
K −

∑
h∈b W(h, ωt)

T (t, b)
K̄

=
∑
r∈R

αr

(∑
h∈b(K) λr,h,t(ωt)

T (t, b)
K −

∑
h∈b λr,h,t(ωt)

T (t, b)
K̄
)
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Recall that
∑

h∈b(K) λr,h,t(ωt)
T (t,b) K is not continuous in K, since it can jump up when b(K) changes. We

construct a continuous linear approximation by fitting a straight line through (K, αr K
∑

h∈b(K) λr,h,t(ωt)
T (t,b) )

for five different values of K ranging from 1 to 5 GW. The slope µr,b,t of this line gives an estimate

of the change in wind generation in region r for a unit increase in national wind capacity. We

can can then model wind generation wr(t, b) in block b and week t in SDDP using the investment

state xinv and the constraint:

wr(t, b) ≤ µr,b,t xinv.

The approximation can be illustrated by showing how it applies to some regions in New

Zealand, as a preview to the next section where we discuss the New Zealand system in more

detail. Figure 4 shows the fitted linear functions representing wind generation for the Otago

region of New Zealand for the first (peak), third and fifth load block. A linear regression gives a

(a) Linear wind representation in Otago for

load block 1

(b) Linear wind representation in Otago for

load block 3

(c) Linear wind representation in Otago for

load block 5

Figure 4: Otago wind generation (MW) versus K (GW), where load block sizes T (b, t) are determined using K̄=2.5 GW.

Different colours correspond to different weeks of the year.

good representation of the wind generation in each load block at least at the five data points we

have chosen. The figure also shows that for most weeks, more of the wind generation is assigned

to the load blocks with less demand (the average generation across the weeks shifts upwards

as the block number increases). In fact, for all the regions the yearly mean wind generation is

always increasing going from the first block to block two, three, four and five. Figure 5 shows

the data points and the corresponding linear regression for the Wellington region. This has a

poorer fit, and a few of the estimated slopes in load block 1 are negative. They end up negative

because W is discontinuous in K (possibly) jumping downwards when b(K) changes. The impact

of this is strongest in the Wellington region because the value of Kr/K is large compared to other

regions in the model.
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(a) Linear wind representation in Wellington

for load block 1

(b) Linear wind representation in Welling-

ton for load block 3

(c) Linear wind representation in Wellington

for load block 5

Figure 5: Wellington wind generation (MW) versus K (GW), where load block indices are determined using K̄=2.5 GW.

Different colours correspond to different weeks of the year.

4. A New Zealand case study

In this section, we show the results of applying our model to the New Zealand electricity sys-

tem. We do this by amending JADE, an existing open-source SDDP model of the New Zealand

electricity system (Electric Power Optimization Centre, 2021). JADE is written in Julia (Bezan-

son et al., 2017) using the JuMP (Lubin et al., 2023) and SDDP.jl (Dowson & Kapelevich, 2021)

packages, and it is distributed by the New Zealand Electricity Authority. For this paper, we ex-

tended JADE to add the investment decisions and a wind generation model as described in the

previous sections.

The New Zealand electricity system is spread over two islands as shown in Figure 6. The

details of this system can be found in, for example, Philpott et al. (2019) and so we only give a

brief description here. As in Philpott & Downward (2023), JADE in the current paper approxi-

mates the full 250-node transmission network by an 11-node model as shown in the right-hand

panel. Generation capacities and demand in each island for 2017 are also shown in Figure 6.

The islands are joined by a HVDC cable of capacity 1050 MW (shown by the dashed line in

Figure 6).

JADE has the ability to model arbitrarily many state variables but following Philpott & Down-

ward (2023) we limit these to storage volumes in Lake Taupo at node WTO, storage volumes in

Lakes Tekapo, Ohau and Pukaki at node CAN, and storage volumes in Lake Hawea and Lakes

Manapouri-Te Anau at node OTG. The proposed Lake Onslow reservoir is located in node OTG.

The details of the power plants associated with these reservoirs are given in Appendix B, and

the mathematical formulation of JADE is provided in Appendix A.
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Figure 6: The New Zealand electricity system, showing major transmission lines and the 11 node approximation used in

the JADE model.

Our use of JADE enables a straightforward comparison to be made with the wind investment

decisions optimized by Philpott & Downward (2023) using enumeration in JADE. They con-

sidered three alternative scenarios for a fully renewable electricity system in 2035, in which all

capacity decisions were determined up front apart from wind capacity that was optimized. In

all three scenarios existing non-renewable electricity plants were closed. In the first case a large

pumped hydro storage facility Lake Onslow (1.5 GW and 5 TWh), is built to balance the system.

The second alternative includes a zero-emission green peaker plant, and the third case assumes

existing renewable capacity. We refer to these three cases as Onslow, Peakers and Wind only

from now on. The investments in new wind capacity for each case were then found by solving

JADE a number of times with different capacity levels and selecting the capacity choice yielding

a generation weighted average price (GWAP) equal to the LCOE for the new wind power plants.

The results of these experiments provide a useful benchmark for the investments generated by

our method.

Of the 11 regions shown in Figure 6, seven have consented wind farms. We allocate new

wind capacity proportional to the existing capacity in these regions, as shown in Table 1. This

means that the state variable xinv is implemented as the national wind capacity K, and the regional
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shares of this capacity are fixed to αrK.

Region αr Representative wind power plant Capacity [MW]

CAN 0.0814 White Hill 58

CEN 0.0627 Tararua Stage 3 93

HBY 0.0914 Te Uku 28

OTG 0.1926 White Hill 58

TRN 0.000 Waipipi 133

WEL 0.5670 West Wind 142.6

WTO 0.0049 Te Uku 28

Table 1: Representative wind farms and αr for each region with wind.

Recall that the levelized cost of energy (LCOE) is defined as:

LCOE =
Lifetime cost of capacity
Lifetime energy produced

.

If we denote the overnight capital cost of 1 MW of wind by I, its lifetime by τ years, its capacity

factor by η, and H as the number of hours in a year (8760), then (ignoring maintenance costs):

LCOE =
I

H · η · (1 + β + β2 + . . . βτ−1)
.

Thus:

I = LCOE · H · η ·
1 − βτ

1 − β
.

Following Philpott & Downward (2023), we assume LCOE = 65 NZD/MWh. The national

wind capacity factor η is estimated from the wind profiles to be 0.355, and we assume τ =

20. When β = 0.9, this gives an overnight investment cost for our infinite-horizon model of

I = 1.78 × 106 NZD/MW.

5. Results

In this section, we present the results of applying our model to the New Zealand case study

briefly introduced in the previous section. The main results presented in this paper are the result-

ing invested wind capacities for different model runs with our altered model.
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5.1. Comparison to Philpott & Downward (2023)

Figure 7 compares the investment decisions from our model with the levels published in

Philpott & Downward (2023), which were found by re-solving JADE with different investment

levels and choosing the best (shown by the horizontal, dotted lines). In each of the three cases,

our model is trained for ten SDDP iterations, and then the investment decision for the national

wind capacity is evaluated. This is repeated for a total of 1000 SDDP iterations, adding new cuts

to the investment problem for ten consecutive forward and backward passes at the time. The plot

shows that the endogenous investment decision approaches the benchmark investment levels as

the model is trained with more iterations.

Figure 7: Investment decisions for new wind capacity in the three different cases against the number of SDDP training

iterations. Horizontal, dotted lines are those found by Philpott & Downward (2023).

In general, the results in Figure 7 indicates that our method for integrating the investment

decision works, with resulting wind investments close to the ones found in the previous study.

We would not expect the optimal investments in our JADE model to match exactly the optimal

investments in the JADE model used in Philpott & Downward (2023) for several reasons. First,

the linear wind representation described in Section 3 is a simplification of the affect that wind

investment will have on residual load, compared with Philpott & Downward (2023) where the

load duration curve is re-computed for each level of investment. Second, our model represents

tranches of load shedding as a proportion of original load, whereas Philpott & Downward (2023)

treats these as proportions of residual load (after wind has been subtracted). Finally, Philpott &
15



Downward (2023) uses round numbers when enumerating different levels of wind investment,

whereas the investment decision in our model is a continuous variable.

Despite some differences between the two versions of the model, the resulting investments

are similar. Evaluating the policy every tenth iteration however, introduces some randomness to

Figure 7. It is easy to see that the investments improve as more cuts are added to the policy, but

the plot does not prove convergence in any way. Figure 8 shows the lower bound and the rolling

mean of the simulation values from the forward pass for all of the three cases. We terminated the

training loop of SDDP.jl after a fixed iteration limit of 1000 iterations.

(a) (b) (c)

Figure 8: Plots of the lower bound and the rolling mean of simulation values from the forward pass for each of the three

cases when the model is trained with 1000 iterations: (a) Onslow; (b) Peakers; and (c) Wind only

5.2. Incorporating HVDC and peaker capacity

One of the strengths of integrating the investment decisions in the model compared to the

method from Philpott & Downward (2023) is that one can easily optimize more investment types,

at the cost of increased computational effort. To illustrate this, we conduct an experiment where

the wind capacity is split into North Island and South Island investments. In addition, we let the

model optimize the capacity of the green peaker in the Peakers case, and the HVDC transmission

capacity between the North Island and the South Island of New Zealand in all of the cases. Thus,

the xinv state variable is now a vector with four elements, increasing the number of subproblems

solved in training the policy with 1000 iterations from 11.6 million to 15.4 million. Solving such

a case by enumeration is much more difficult.

Table 2 summarizes the results from the extended investment model after training with 1000

iterations. The total wind investment is lower in all cases than the values in Figure 7. Multiple

factors are contributing to this outcome. In our previous model we assumed that the capacity on
16



Investments and costs Onslow Peakers Wind only

Wind - North Island [MW] 1315 1458 1997

Wind - South Island [MW] 0 0 0

HVDC capacity [MW] 643 0 379

Green peaker [MW] - 837 -

CAPEX [MNZD] 4633 3671 5047

OPEX [MNZD] 2128 2219 3775

Total [MNZD] 6761 5890 8822

Table 2: Resulting investments and costs from the extended investment model. CAPEX is the cost of the deterministic

investment node. OPEX is the SDDP lower bound less the CAPEX cost.

the HVDC connection between the South Island and the North Island was sufficient to meet all

transfers. This enabled a comparison with Philpott & Downward (2023) as shown in Figure 7.

The new model optimizes the HVDC capacity, with the existing capacity as the starting point.

Thus, optimal wind investments are lower when wind investments needs to come with following

grid investments to access storage in the South Island. In this case, shedding more load is cost

efficient compared to extensive grid expansion. Also, as load centers are located on the North

Island (and the capacity factor of the representative wind power plants on the North Island is

higher than on the South Island), all wind investments are made in the North Island only.

Table 2 shows that increased HVDC capacity is most beneficial in the Onslow case, because

the Lake Onslow pumped hydro storage is located in the South Island and requires grid capacity

to provide its flexibility to the North Island.

In the Peakers case, the optimal value of peaking capacity determined by the new model is

significantly higher than that assumed in Philpott & Downward (2023). The Wind only case has

the highest CAPEX, because of the larger wind investments, and the highest OPEX, because of

load shedding, of the three cases. The investment costs from building Lake Onslow (estimated in

MBIE: New Zealand Battery Project (2022) to be 15700 MNZD) are not included in the CAPEX

cost for the Onslow case. Thus the total cost for the Onslow case is 22461 MNZD, which is

almost four times the cost for the cheapest alternative, namely the Peakers case.

Figure 9 shows the utilization of the HVDC cable in each investment case over the 31 histor-

ical inflow years 1990–2020. The resulting HVDC capacities are shown as the horizontal, dotted
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Figure 9: Flow-duration curve for flow on the HVDC line from WEL (North Island) to CAN (South Island) in the three

different cases when simulated over the 31 historical inflow years 1990–2020. The horizontal, dotted lines shows the

maximum capacity of the lines in each case, which is the sum of the existing capacity (the gray line) and the invested

grid capacity.

lines, while the three plotted lines display the duration curve for the load flow on the HVDC

connection with positive load flow defined as flow from the Wellington region (North Island) to

the Canterbury region (South Island). The green, horizontal line is equal to the existing capacity

(gray line) as now grid investments are made in the Peakers case. The x-axis gives the percentage

of simulated hours where load flow is equal to or greater than y MW. In all cases the utilization

of the transmission line goes both ways, with the largest flows in the Onslow case, where North

to South flow is needed for pumping and reverse flow transports Onslow generation north. In the

two other cases, HVDC investments are lower, and the full capacity from the North Island to the

South Island is utilized more that the full reverse flow.

Figure 9 is complemented by Figure 10, which visualizes the utilization of the six (five with-

out Lake Onslow) main reservoirs in the system. The figure shows that four of the five reservoirs

are operated with lower storage levels when other sources of flexibility are in place, like Lake

Onslow or a green peaker plant, hence reducing the risk of spillage.

Figure 11 plots trajectories of marginal water values in the hydro reservoirs. These values can

be taken as an indication of spot energy prices when these are determined by energy constraints

rather than capacity constraints. Marginal water values are very low in the Wind only case,
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Figure 10: Hydro reservoir levels relative to consented minimum operating levels for the three different cases when

simulated over the 31 historical inflow years 1990–2020. The lines are the median reservoir level and each coloured

band depicts the 25th and 75th percentile levels. Some reservoirs can have negative storage when the reservoir level falls

below the consented operating minimum (incurring a cost penalty).

and higher in the other two cases. In the Wind only case, prices are set by periods when the

wind is not blowing and load must be shed because conventional capacity and/or grid capacity

is insufficient, even though energy in reservoir storage is plentiful giving low marginal water

values. In the other two cases, we have increased dispatchable capacity, and prices are set by

anticipated energy shortages that are reflected by higher marginal water values. More detailed

plots of the storage trajectories and marginal water values for the 31 historical inflow years from

1990–2020 can be found in Appendix C and Appendix D.

When demand cannot be met, the system must shed load. Figure 12 shows the probability of

shedding more than y MWh of load in a random week. In all three cases, more than 10 percent

of the 1612 simulated weeks have some load shedding.

The Wind only case sheds load in a large proportion of weeks, in periods when the amount of

wind generation is unable to meet demand even if all other generators are at full capacity. This

means prices are set by shortage costs while marginal water values are generally lower (since

generation or grid capacity constraints mean extra water cannot be used to offset this shortage).

The prices in these periods provide revenue for wind investment; in other periods prices are zero.
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Figure 11: Marginal water values for different reservoirs in the three different cases when simulated over the 31 historical

inflow years 1990–2020. The lines are the median marginal water value and each coloured band depicts the 25th and

75th percentiles.

Figure 12: Duration curves of the weekly load shedding in the three cases when simulated over the 31 historical inflow

years 1990–2020.

The Peakers case provides dispatchable generation capacity to reduce the number of shortage

periods. The green trajectory in Figure 12 shows that this results in less load shedding from

capacity constraints. Some of the investment that was made in the Wind only case is diverted to
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peakers. The availability of more dispatchable plant makes reservoir operation less conservative

making energy shortages more likely, and marginal water values increase.

The Onslow case also provides dispatchable generation capacity to reduce the number of

shortage periods so the red trajectory in Figure 12 lies below the blue, at least for nearly every

week in the simulation. Observe that there are a small number of weeks in the simulations when

the load shedding is much higher. As observed in Philpott & Downward (2023), these cases

occur when Onslow generation is required but the lake has been emptied by a dry period in the

previous year. Marginal water values and load shedding become very high in these weeks.

6. Conclusions

In this paper, we have shown how capacity expansion investments can be included in an

infinite-horizon operational SDDP model by augmenting the policy graph to include an invest-

ment node. We derived a linear representation of wind generation in different load blocks to link

the investment decisions with the subproblem constraints. Additionally, by applying our method

to the New Zealand energy system, we have shown that our proposed method is flexible, and that

it can be used to analyse a variety of options for expansion within the same system. Because our

model is based on the policy graph and SDDP.jl, it did not require us to code a customized de-

composition algorithm, which makes our model easier to adopt and implement than alternatives

in the literature.

The results from our case study show that, with the assumptions we made, a peaker plant

located in the North Island is a more cost efficient supplement to wind investments than the Lake

Onslow pumped hydro storage.1
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Appendix A. JADE formulation

JADE seeks a policy of electricity generation that meets demand and minimizes the expected

cost of thermal generation fuel consumed plus any costs of load reduction. All data are deter-

ministic except for weekly inflows that are assumed to be stagewise independent. The resulting

stochastic dynamic programming model is defined as follows. Let x j (t) denote the storage in

reservoir j at the end of week t, and let the Bellman function Ct(x̄, ω(t)) be the minimum dis-

counted expected fuel cost to meet electricity demand in weeks t, t+1, . . ., when reservoir storage

x j(t − 1) at the start of week t is equal to x̄ j and the inflow to reservoir j in week t is known to be

ω j(t).

In JADE, a weekly discount factor ρ = β1/52 is used when going from any stage to the next,

where β < 1 is the annual discount factor. This implies that in each stage there is a probability of
23



1 − ρ of transitioning from stage t to a zero-node 0 where C0(x̄, ω(0)) = 0.

The Bellman function Ct(x̄, ω(t)) for week t is the optimal solution value of the mathematical

program:

Ct(x̄, ω(t)) =

min
∑

i∈N
∑

b T (b, t)
(∑

m∈F (i) ϕm fm(b, t) +
∑

l∈L(i) ψlbzi(l, b, t)
)

+ ρ · E[Ct+1(x(t), ω(t + 1))]

s.t. gi(y(b, t)) +
∑

m∈F (i) fm(b, t) +∑
m∈H(i) γmhm(b, t) +

∑
l∈L(i) zi(l, b, t) = Di(b, t), i ∈ N

x(t) = x̄ − S
∑

b T (b, t) (A h(b, t) + A s(b, t) − ω(t))

0 ≤ fm(t) ≤ am, m ∈ F (i), i ∈ N

0 ≤ hm(t) ≤ bm, 0 ≤ sm(t) ≤ cm, m ∈ H(i)

0 ≤ x j(t) ≤ r j, j ∈ J , i ∈ N , y ∈ Y.

This description uses the following indices:

Index Refers to

t index of week

i node in transmission network

b index of load block

m index of plant

j index of reservoir

N set of nodes in transmission network

F (i) set of green peaker plants at node i

H(i) set of hydro plants at node i

L(i) set of load types at node i

J set of reservoirs.

24



The parameters are:

Symbol Meaning Units

ϕm short-run marginal cost of peaker plant m $/MWh

ψlb cost of shedding load type l in load block b $/MWh

γm conversion factor for water flow into energy MWs/m3

Di(b, t) electricity demand in node i in block b, week t MW

T (b, t) number of hours in load block b in week t h

S number of seconds per hour (3600)

am thermal plant capacity MW

bm hydro plant capacity m3/s

cm spillway capacity m3/s

r j reservoir capacity m3

Y feasible set of transmission flows

A incidence matrix of river chain

The variables are:

Symbol Meaning Units

ρ weekly discount factor

fm(b, t) generation of green peaker plant m in load block b in week t MW

zi(l, b, t) shed load of type l in load block b in node i in week t MW

x j(t) storage in reservoir j at end of week t m3

x̄ j known storage in reservoir j at start of week t m3

h(b, t) vector of hydro releases in block b, week t m3/s

s(b, t) vector of hydro spills in block b, week t m3/s

ω(t) inflow (assumed constant over the week) m3/s

y(b, t) flow in transmission lines in load block b in week t MW

gi(y) sum of flow into node i when transmission flows are y MW

The water-balance constraints in the storage reservoirs at the end of week t are represented

by:

x(t) = x̄ − S
∑

b

T (b, t)(A h(b, t) + A s(b, t) − ω(t)),

where x j(t) is the storage in reservoir j at the end of week t, s j(b, t) denotes the rate of spill (in

m3/second) in load block b in week t, and ω j(t) is the uncontrolled rate of inflow into reservoir
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j in week t. We multiply all of these by S to convert to m3/hour, and then by T (b, t) to give m3

in each load block. All these are subject to capacity constraints. (In some cases we also have

minimum flow constraints that are imposed by environmental resource consents.) The parameter

γm, which varies by generating station m, converts flows of water hm(t) into electric power. The

same variables and constraints can be used to model pumping of water into a reservoir, except

the value of the parameter γm is negative to reflect that energy is consumed as water is pumped

into a higher reservoir.

Appendix B. System data

We summarize here the features of the New Zealand system represented in JADE. A full

data set can be downloaded from New Zealand Electricity Authority (2023). For our study, all

existing fossil-fuel plant have been removed from the model.

Generator Region Capacity [MW] Specific power (MW/cumec)

Arapuni WTO 192 0.462

Aratiatia WTO 78 0.284

Atiamuri WTO 84 0.196

Karapiro WTO 96 0.264

Maraetai WTO 352 0.526

Matahina BOP 80 0.595

Ohakuri WTO 112 0.284

Rangipo CEN 120 1.960

Tokaanu CEN 240 1.750

Waikaremoana HBY 140 3.535

Waipapa WTO 54 0.139

Whakamaru WTO 124 0.316

Table B.3: North Island hydro generation stations optimized in JADE model

Appendix C. Storage trajectories

In Figures C.15, C.16, and C.17, we plot the reservoir storage for the six largest reservoirs

over the 31 years of historical simulation.
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Figure B.13: South Island river chains optimized in JADE. Storage in circled reservoirs are state variables. South Island

hydro plant not shown here are assumed to be run-of-river.

Figure B.14: North Island river chain (Waikato river) optimized in JADE. Storage in circled reservoir (Taupo) is a state

variable. North Island hydro plant not shown here are assumed to be run-of-river.
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Figure C.15: Reservoir levels relative to the operating minimum for the historical inflow years 1990–2020 for the Onslow

case. Light gray lines are the 31 trajectories from each simulated year, the solid line is the median, and the shaded bands

are the 10–90 and 25–75 percentiles.

Figure C.16: Reservoir levels relative to the operating minimum for the historical inflow years 1990–2020 for the Peakers

case. Light gray lines are the 31 trajectories from each simulated year, the solid line is the median, and the shaded bands

are the 10–90 and 25–75 percentiles.
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Generator Region Capacity [MW] Specific power (MW/cumec)

Aviemore CAN 220 0.310

Benmore CAN 540 0.818

Clyde OTG 464 0.518

Cobb NEL 32 4.405

Coleridge CAN 39 1.009

Manapouri OTG 842 1.531

Ohau A CAN 264 0.501

Ohau B CAN 212 0.417

Ohau C CAN 212 0.417

Roxburgh OTG 320 0.402

Tekapo A CAN 27 0.232

Tekapo B CAN 154 1.285

Waitaki CAN 105 0.162

Onslow Pump OTG 1500 -7.027

Onslow Gen OTG 1500 5.417

Table B.4: South Island hydro generation stations optimized in JADE model

Appendix D. Marginal water values

In Figures D.18, D.19, and D.20, we plot the marginal water values for the six largest reser-

voirs over the 31 years of historical simulation.
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Figure C.17: Reservoir levels relative to the operating minimum for the historical inflow years 1990–2020 for the Wind

only case. Light gray lines are the 31 trajectories from each simulated year, the solid line is the median, and the shaded

bands are the 10–90 and 25–75 percentiles.

Figure D.18: Marginal water values for the historical inflow years 1990–2020 for the Onslow case. Light gray lines are

the 31 trajectories from each simulated year, the solid line is the median, and the shaded bands are the 10–90 and 25–75

percentiles.
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Region Generation (MW)

AKL 39.54

WTO 864.97

BOP 240.23

CEN 30.16

TRN 59.91

CAN 15.80

NEL 22.24

OTG 40.23

Table B.5: Small fixed generation (including geothermal) for each region where this exists.

Figure D.19: Marginal water values for the historical inflow years 1990–2020 for the Peakers case. Light gray lines are

the 31 trajectories from each simulated year, the solid line is the median, and the shaded bands are the 10–90 and 25–75

percentiles.
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Figure D.20: Marginal water values for the historical inflow years 1990–2020 for the Wind only case. Light gray lines

are the 31 trajectories from each simulated year, the solid line is the median, and the shaded bands are the 10–90 and

25–75 percentiles.

32


	Introduction
	Modelling investments using a policy graph
	Modelling renewable investments in the subproblems
	A New Zealand case study
	Results
	Comparison to Philpott & Downward (2023)
	Incorporating HVDC and peaker capacity

	Conclusions
	JADE formulation
	System data
	Storage trajectories
	Marginal water values

