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Abstract

JADE is a hydrothermal scheduling system developed in the JuMP modeling language and
distributed as the Julia package JADE.jl. It leverages the stochastic dual dynamic programming
package SDDP.jl to compute optimal water release policies over a calendar year. This paper
describes the application of JADE to study a proposed pumped storage facility (Lake Onslow) in
New Zealand’s South Island in a target year of operation (2035). We compute optimal levels of
wind investment with and without the Onslow storage, and show that the value of Onslow accrues
from both energy storage (to cover dry winters) and capacity (to deal with windless peak demand
periods). The Onslow solutions are then compared with solutions that can access dispatchable
peaking plant.

1 Introduction

The New Zealand Government has set a target of 50% of total energy consumption to come from
renewable sources in 2035, and has stated an aspiration to meet a target of 100% renewable electricity
by 2030 [11]. One impediment to achieving this aspiration is the so-called “dry-winter” problem faced
by the New Zealand electricity system. Dry winters with low winter rainfall and snowfall occur from
time to time in New Zealand. These winters yield lower than expected inflows into New Zealand’s
hydroelectric reservoirs, resulting in the risk of an energy shortage. Because New Zealand cannot
import electricity, energy shortages must be dealt with locally, either by dispatching backup generation
or reducing load.

The market response to the risk of an energy shortage is to build thermal plant that can perform
a hydro-firming role. The revenues that will be earned by these plants come from future electricity
prices that vary with inflows and so are random. In principle, price distributions can be estimated from
hydro-thermal scheduling models that optimize the trade-offs between thermal and hydro generation
with uncertain inflows. If 100% of electricity generation is renewable then there will be no thermal plant
to firm hydro. Firming must come from “overbuilt” renewable (wind) generation, demand response or
from increased storage capacity, or some combination of these. Determining the costs and benefits of
different firming approaches is currently under investigation by the New Zealand Battery Project [10].

Since future inflows to reservoirs are uncertain, the expected costs of load reduction (or thermal hydro-
firming) must be estimated from stochastic optimal control models. The exact solution of these models
is only possible (e.g. by dynamic programming [2]) for small instances with few state variables. In
practice, the number of state variables required to represent typical electricity system models is beyond
this, so methods of approximate dynamic programming are used to solve them. The most popular
method of this type used in the energy sector is the Stochastic Dual Dynamic Programming (SDDP)
algorithm of Pereira and Pinto [14].

The software we have developed to optimize hydro-firming is called JADE. The development of JADE
arose out of research in reservoir optimization being carried out in the Electric Power Optimization
Centre at the University of Auckland. The first code developed by this group was called Dynamic
Outer Approximation Sampling Algorithm (DOASA). This solves the optimization problem using a
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re-sampling version of SDDP as described in [15]. DOASA was originally implemented in AMPL as
a general purpose implementation, which was later redeveloped in C++ and configured for the New
Zealand electricity system under the name EMI-DOASA [16]. EMI-DOASA is about 20 times faster
than the AMPL version.

The advent of the Julia programming language [3] and the JuMP mathematical programming package
[6] enabled the development of a Julia package SDDP.jl by Dowson and Kapelevich [5]. The Julia
package JADE.jl combines SDDP.jl with a JuMP model of the New Zealand electricity system that
can be easily modified to focus on specific research questions related to the operation of this system.
A default version of JADE is maintained by the New Zealand Electricity Authority with an up-to-date
data set of historical inflows, demand, and infrastructure capacities. JADE.jl runs marginally slower
than EMI-DOASA while gaining the flexibility afforded by the JuMP modeling language.

One of the leading contenders in the NZ Battery project is a scheme to increase storage in Lake Onslow
in the lower South Island by pumping water from the Clutha river. This stored water can then be used
to generate electricity during a dry winter. The water also can be used in a classical pumped-storage
mode to generate electricity in peak demand periods when intermittent renewable generation (wind
and solar) is insufficient to meet load. The capital costs of building such a scheme have recently been
estimated to be (NZD)$15.7 billion [10].

The main aim of this paper is to demonstrate the use of JADE to compute the benefits of the Lake
Onslow proposal to the electricity system. Although these benefits can be compared with the capital
cost of this project, to see if it is worthwhile pursuing, we do not attempt a complete analysis here.
Our intention is to showcase the insights that a SDDP model like JADE can provide. The expected
operational benefits computed by our JADE model use the NZ CCC demand forecast for 2035 under
their “Demonstration” scenario, assuming also that the Tiwai Point aluminium smelter will still operate
or be replaced by other industrial load of the same amount. Other scenarios predict more load from
plug-in electric vehicles, and different industrial electricity load, attenuated by smelter closure, A full
analysis using JADE would repeat what we describe here for these alternative scenarios.

Our model assumes a central planning approach in which the total expected cost of operating the
electricity system is minimized. This could be contrasted with a simulation model that computes
electricity market outcomes arising from offers of energy from generators. Such a market would cor-
respond to our model if all agents were to offer generation at its short-run marginal cost and were
risk-neutral. In practice, generators (and loads) are risk-averse and so one might expect their actions
to reflect this. Some of the risks faced by agents can be traded with counter parties through derivative
instruments of various types. In theory, a complete market for trading risks when these are modeled
using coherent risk measures leads to an equivalent risk-averse central planning problem [7], which
raises the possibility of exploring the actions of risk-averse agents using a risk measure in SDDP. We
leave this for future work.

The paper is laid out as follows. In the next section we describe the stage model that forms the
weekly optimal dispatch problem in the 52-week steady-state discounted dynamic program. In section
3 we provide the assumptions and parameter choices made for our Lake Onslow study. These involve
the physical design characteristics of the scheme, the approximation to the New Zealand transmission
network, assumptions about electricity demand in 2035, and our inflow model. Section 4 presents the
results of running JADE and simulating the (approximately) optimal dispatch policies that this yields.
Finally, Section 5 draws conclusions.

2 JADE

2.1 JADE and SDDP

JADE seeks a policy of electricity generation that meets demand and minimizes the expected cost of
thermal generation fuel consumed plus any costs of load reduction. All data are deterministic except
for weekly inflows that are assumed to be stagewise independent. The resulting stochastic dynamic
programming model is defined as follows. Let xj (t) denote the storage in reservoir j at the end of
week t, and let the Bellman function Ct(x̄, ω(t)) be the minimum expected fuel cost to meet electricity
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demand in weeks t, t+ 1, . . ., when reservoir storage xj(t− 1) at the start of week t is equal to x̄j and
the inflow to reservoir j in week t is known to be ωj(t). We assume Eω(T+1) [CT+1(x̄, ω(T + 1))] is a
known function of x̄ that defines the expected future cost at the end of stage T when x(T ) = x̄. Then
the Bellman function Ct(x̄, ω(t)) is the optimal solution value of the mathematical program:

Pt(x̄, ω(t)): min
∑

i∈N
∑

b T (b, t)
(∑

m∈F(i) ϕmfm(b, t) +
∑

l∈L(i) ψlbzi(l, b, t)
)

+

E[Ct+1(x(t), ω(t+ 1))]

s.t. gi(y(b, t)) +
∑

m∈F(i) fm(b, t) +∑
m∈H(i) γmhm(b, t) +

∑
l∈L(i) zi(l, b, t) = Di(b, t), i ∈ N ,

x(t) = x̄− S
∑

b T (b, t) (Ah(b, t) +As(b, t)− ω(t)) ,

0 ≤ fm(t) ≤ am, m ∈ F(i), i ∈ N ,

0 ≤ hm(t) ≤ bm, 0 ≤ sm(t) ≤ cm, m ∈ H(i),

0 ≤ xj(t) ≤ rj , j ∈ J , i ∈ N , y ∈ Y.

This description uses the following indices:

Index Refers to
t index of week
i node in transmission network
b index of load block
m index of plant
j index of reservoir
N set of nodes in transmission network
F(i) set of green peaker plants at node i
H(i) set of hydro plants at node i
L(i) set of load types at node i
J set of reservoirs.

The parameters are:

Symbol Meaning Units
ϕm short-run marginal cost of peaker plant m $/MWh
ψlb cost of shedding load type l in load block b $/MWh

γm conversion factor for water flow into energy MWs/m
3

Di(b, t) electricity demand in node i in block b, week t MW
T (b, t) number of hours in load block b in week t h
S number of seconds per hour (3600)
am thermal plant capacity MW
bm hydro plant capacity m3/s
cm spillway capacity m3/s
rj reservoir capacity m3

Y feasible set of transmission flows
A incidence matrix of river chain
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The variables are:

Symbol Meaning Units
fm(b, t) generation of green peaker plant m in load block b in week t MW
zi(l, b, t) shed load of type l in load block b in node i in week t MW
xj(t) storage in reservoir j at end of week t m3

x̄j known storage in reservoir j at start of week t m3

h(b, t) vector of hydro releases in block b, week t m3/s
s(b, t) vector of hydro spills in block b, week t m3/s
ω(t) inflow (assumed constant over the week) m3/s
y(b, t) flow in transmission lines in load block b in week t MW
gi(y) sum of flow into node i when transmission flows are y MW.

Here the water-balance constraints in the storage reservoirs at the end of week t are represented by

x(t) = x̄− S
∑
b

T (b, t)(Ah(b, t) +As(b, t)− ω(t))

where xj(t) is the storage in reservoir j at the end of week t, sj(b, t) denotes the rate of spill (in
m3/second) in load block b in week t, and ωj(t) is the uncontrolled rate of inflow into reservoir j in
week t. We multiply all of these by S to convert to m3/hour, and then by T (b, t) to give m3 in each
load block. All these are subject to capacity constraints. (In some cases we also have minimum flow
constraints that are imposed by environmental resource consents.) The parameter γm, which varies
by generating station m, converts flows of water hm(t) into electric power. The same variables and
constraints can be used to model pumping of water into a reservoir, except the value of the parameter
γm is negative to reflect that energy is consumed as water is pumped into a higher reservoir.

The (blocked) node-arc incidence matrix A represents the collection of river valley networks that make
up the hydroelectric system, where each row of A aggregates controlled flows that leave a reservoir by
spilling or generating electricity and subtracts those that enter a reservoir from upstream. In other
words row j of Ah(b, t) +As(b, t) gives the total controlled flow out of the reservoir (or river junction)
represented by row j, this being the release and spill of reservoir j minus the sum of any immediately
upstream releases and spill.

2.2 Steady-state optimization

JADE applies SDDP.jl to a JuMP model of the New Zealand electricity system as described above.
SDDP.jl has the ability to model this system over an infinite horizon using a PolicyGraph description
of a multistage stochastic optimization problem [4]. Whereas a finite-horizon implementation of SDDP
has a linear policy graph with final stage T and an associated terminal cost function CT+1(x(T + 1)),
it is possible to link stage T to stage 1 by adding an edge to the policy graph with an annual discount
factor d that will apply to the future cost in stage 1 (of the next year). However, to give a smooth
transition between years we discount costs in each stage of JADE by an equivalent weekly factor d1/52.

The training iterations of SDDP occur as they would in the finite horizon case except that the future
cost at stage T + 1 is now modeled using the discounted future cost at the start of stage 1. Almost
sure convergence of this process to an ε-optimal solution can be demonstrated by applying convergence
results for long finite horizon models [15], but obtaining reasonable policies typically takes many more
iterations than a finite-horizon training. The outcome of this training is a policy that can be simulated
over sampled or historical inflow sequences to yield steady-state trajectories as shown in Figure 2.
Here the value of national storage at the right-hand end of a trajectory is the starting value for the
following year. In each week these values represent a probability distribution of national energy levels
in steady-state operation of the JADE policy.

3 Lake Onslow study

The design and operation of the proposed Lake Onslow pumped-storage facility have not yet been
finalized. Some preliminary estimations of design parameters can be found in [1] and [9]. Here we
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summarize these parameters and the assumptions that we have made for design decisions that have
yet to be determined.

3.1 The reservoir and power station

There have been two proposed reservoir options: Lake Onslow and Lake Onslow plus Manorburn
Basin. We have chosen to restrict attention to filling only Lake Onslow by building a dam where it
meets the Teviot River. Our study assumes a maximum stored volume of 3,100 Mm3 amounting to
stored energy of 5,000 GWh [10].

Two tunnel options for pumping and release of water into Lake Onslow that have been considered in
previous research [1] are:

1. the Upper Roxburgh Dam connects to Lake Onslow via a 24km tunnel; or

2. the Lower Clutha River connects to Lake Onslow via a 15km tunnel.

Our study has assumed the first of these options, to be modelled by two arcs, a release arc (m = r)
and a pumping arc (m = p). We assume a constant pumping efficiency of 77%, so γr = −0.77γp.

3.2 The transmission network

JADE requires load duration curves for the study year for each week of this year and each region of the
model. The full network used in Transpower’s economic dispatch model SPD is too large to represent
in JADE and so we approximate this network by 11 regions as shown in Figure 1. Observe that the
approximate network is radial (i.e. contains no loops), which results in some loss in accuracy (e.g. in
ignoring the transmission line from Waikato (WTO) to Hawkes Bay (HBY).)

Figure 1: SPD network on left is approximated by an 11-node transmission system

In order to model transfers of power between regions we identify transmission lines that form cuts
that separate the SPD network into the regions shown. Each line has an implicit direction, so some
recorded flows will be negative. The list of lines used in our model is shown in Table 1.
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From To Lines
NIS AKL BRB HPI1.1

AKL WTO PAK WKM1.2; PAK WKM2.2; OTA WKM1.1; OTA WKM2.1; DRY HLY1.1

WTO BOP KIN TRK1.2; KIN TRK2.2; ATI TRK1.1; ATI TRK2.1

WTO CEN ARI ONG.2

CEN TRN BPE WGN1.1; BPE WGN2.1; BPE BRK1.1; BPE BRK2.1

CEN HBY DVK WPW1.2; DVK WPW2.2

WEL CEN HAY LTN1.1; MGM WDV1.1; MGM WDV.1

WEL CAN HAY BEN1.1; HAY BEN2.1

CAN NEL ISL KIK1.1; ISL KIK2.3; ISL KIK3.3; COL OTI1.1; COL OTI2.1

CAN OTG NSY ROX.1

AKL NIS HPI MDN1.1; HEN MPE2.1; HEN MPE1.1

WTO AKL OHW OTA2.1; OHW OTA1.1; HLY OTA2.1

BOB OTA1.1; BOB OTA2.1BOP WTO KAW OHK.1

CEN WTO TKU WKM1.1; TKU WKM2.1; RPO WRK1.1

CEN WEL BPE HAY1.1; BPE HAY2.1; BPE PRM HAY1.1; BPE PRM HAY2.1; BPE WIL1.2

CAN WEL BEN HAY1.1; BEN HAY2.1

OTG CAN CYD TWZ1.2; CYD TWZ2.2

Table 1: SPD lines joining regions in 11-node model, shown in direction of positive flow.

3.3 Regional load estimates for 2020

The load duration curves for each region are based on the observed load values for 2020. We compute
the generation in each half-hour trading period of 2020, by running vSPD1 with the GDX file for the
trading periods in each day2. This provides us with 366 days, each containing 48 periods (apart from
daylight savings). For each trading period we record the generation of each offering plant and the sent
and received flows in each transmission line in Table 1.

Let r ∈ R denote the index of a region. For each region r we create a list of generators g ∈ r that
we wish to model in this region. The 2020 generation in a given trading period p is denoted qg(p). In
each region r there is a set of nodes n ∈ Nr, where ∪rNr = N . For every r ∈ R, s ∈ S we identify all
lines in the set

L(r, s) = {l ∈ L : l = (m,n),m ∈ Nr, n ∈ Ns}.

Observe that these are directed arcs so L(r, s) ∩ L(s, r) = ∅. We adopt the convention that the node
names are ordered (e.g. are integers) so that m < n for every directed line (m,n).

The flow on arc l = (m,n) in period p is denoted fl(p). We identify two values with fl(p) namely
f+l (p) denoting the flow measured at the start node m of the directed line, and f−l (p) denoting the
flow measured at end point n. The loss in flow in line l is then

hl(p) = f+l (p)− f−l (p).

Observe that hl(p) > 0, even if f+l (p) < 0. In that case, positive flow is sent from n to m, so
−f−l (p) > −f+l (p), and f−l (p) < f+l (p) < 0.

For each line we compute

f+l (p) = fl(p) +
α

2
hl(p)

f−l (p) = fl(p)−
α

2
hl(p),

where we choose α = 0 for a model with lossless flow and α = 1 to represent losses. Then we compute

1vSPD is the New Zealand Electricity Authority GAMS implemetation of SPD, available for download from
www.emi.ea.govt.nz/Wholesale/Tools/vSPD.

2GDX files for each historical day are downloadable from https://www.emi.ea.govt.nz/Wholesale/Datasets/FinalPricing/GDX.
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the total generation in a region r to be

qr(p) =
∑
g∈r

qg(p).

Now consider two adjacent regions r and s. The net flow leaving r for s is

Frs(p) =
∑

l∈L(r,s)

f+l (p)−
∑

l∈L(s,r)

f−l (p)

and the net flow leaving s for r is

Fsr(p) =
∑

l∈L(s,r)

f+l (p)−
∑

l∈L(r,s)

f−l (p).

The sum of these two flows is

Frs(p) + Fsr(p) =
∑

l∈L(r,s)

f+l (p)−
∑

l∈L(s,r)

f−l (p) +
∑

l∈L(s,r)

f+l (p)−
∑

l∈L(r,s)

f−l (p)

=
∑

l∈L(r,s)

hl(p) +
∑

l∈L(s,r)

hl(p)

which is the transmission loss in transfers between r and s.

The demand in region r in period p is now the generation in r in period p minus the total net transfer
out of r to other regions:

dr(p) = qr(p)−
∑
s∈R

Frs(p).

Observe that ∑
r∈R

dr(p) =
∑
r∈R

qr(p)−
∑
r∈R

∑
s∈R

Frs(p)

=
∑
r∈R

qr(p)−
∑
r∈R

∑
s>r

 ∑
l∈L(r,s)

hl(p) +
∑

l∈L(s,r)

hl(p)


=

∑
r∈R

qr(p)− α(flow loss).

3.4 Regional load estimates for 2035

The load duration curves for future years are estimated based on the demand qr(p), r ∈ R for periods
p in a base year, chosen in this study to be 2020. Since 2020 is a leap year we remove the February
29 records if the future year to be estimated is not a leap year. The set of periods is then P , where
|P | = 17520 or 17568 depending on the future year. This means that the number of hours H in the
base year and future year are the same. We let h be the number of hours in each period (0.5), so
H = |P |h.

The growth factor for demand in a future year relative to the base are based on base-year national
demand and forecasts for total national annual demand in the future year taken from the New Zealand
Climate Change Commission 2021 Draft Advice Spreadsheets [8]. We denote

Ik = Total industrial demand in year k (GWh)

Ck = Total commercial and residential demand in year k (GWh)

Sk = Total solar energy generation in year k (GWh)

Gk = Total geothermal energy generation in year k (GWh)

Vk = Total plug-in electric vehicle load in year k (GWh)
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where k = 0 indicates the base year. We have that Ik +Ck = Tk, the total electricity demand (GWh)
in year k. We define increases in these quantities (GWh) by

∆Ik = Ik − I0

∆Ck = Ck − C0

∆Gk = Gk −G0

∆Vk = Vk − V0

∆Sk = Sk − S0.

We let Pr =population of region r in the base year and define its proportion

ρr =
Pr∑
r∈R Pr

, r ∈ R.

The increase in industrial load (MWh) in region r is assumed to be distributed by population, so is
estimated by ρr1000∆Ik. This is then divided by H to give a flat increase of

ir(p) = ρr1000∆Ik/H

MW in each period p. Similarly the increase in plug-in electric vehicle load is

vr(p) = ρr1000∆Vk/H.

The increase in geothermal generation ∆Gk is allocated to Waikato (WTO) and Bay of Plenty (BOP)
regions in the same ratio w : (1−w) as 2020 geothermal generation. This gives a flat increase in MW
of

gW = w1000∆Gk/H

for Waikato and
gB = (1− w)1000∆Gk/H

for Bay of Plenty.

The increase sr(p) in solar generation (MW) in region r is estimated using a given annual solar profile
σr for each region. Here we take σr(p) to be the 2008 historical solar radiation figures for Auckland,
Wellington and Christchurch respectively from [12], assigned to the appropriate region r ∈ R.3

sr(p) =
σr(p)1000∆Sk

h
∑

p∈P

∑
r∈R σr(p)

.

The increase cr(p) in commercial and residential demand (MW) in region r is estimated as follows.
We first compute the 2020 commercial and residential demand Ĉ0(p) (MW) from vSPD.

Ĉ0(p) =
∑
r∈R

dr(p)− 1000I0/H.

This gives a scale factor

β =
1000(Ck − C0)

h
∑

p∈P Ĉ0(p)
.

Then
cr(p) = βρrĈ0(p).

The forecast load d̂r(p) in region r and period p for the future year can now be computed to be

d̂r(p) = dr(p) + cr(p) + ir(p) + vr(p)− sr(p).

Note that this accounts for generation from solar irradiation which is subtracted from the demand.

3Regions CEN,TRN,HBY,WEL were assigned Wellington radiation figures, and the other North Island regions as-
signed Auckland radiation figures. The South Island regions were all assigned Christchurch radiation figures.
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3.5 Building load duration curves

JADE requires load duration curves for each each region and each week of the year to be studied.
This load will be met by generation from renewable energy sources, namely wind farms, solar pan-
els, geothermal energy and hydroelectric generation, and possibly some peaking plant (which may
be configured to burn biofuel or hydrogen). Solar generation is assumed to be embedded, i.e. not
dispatched by SPD. Geothermal energy is taken as fixed baseload quantity distributed between WTO
and BOP regions. Hydroelectric generation is either from storage reservoirs or run-of-river plant. We
discriminate between small hydroelectric facilities for which inflow information is not available and
larger plant for which inflows are recorded in the Electricity Authority EMI database. The small plant
are assumed to operate at a fixed average generation level throughout the year.

Wind generation requires special attention because of its intermittency. Since the wind might not
blow during peak demand periods we cannot uniformly subtract average wind generation from the
load. Our approach is to correct the demand d̂r(p) by subtracting forecast wind generation ŵr(p), and
then to build a load duration curve for the national load

n(p) =
∑
r∈R

(
d̂r(p)− ŵr(p)

)
.

Here ŵr(p) is estimated using forecast wind capacity expansion E and actual wind generation observed
in 2021. The capacity increment E is allocated to regions in proportion to the capacity of new consented
wind farms in that region, so region r has capacity increase αrE where

∑
r∈R αr = 1.

We construct wind data for each region based on historical wind generation for the calendar year 2021.
Wind generation data are available from the EMI database for ten New Zealand wind farms4. Each
wind farm in this database is located in a region r ∈ R as shown in Table 2.

Windfarm Region Rated capacity (MW)

Mahinerangi OTG 36

MillCreek WEL 59.8

Tararua Stage 1 CEN 31.7

Tararua Stage 2 CEN 36.3

Tararua Stage 3 CEN 93.0

Te Apiti CEN 90.8

Te Rere Hau CEN 48.5

Te Uku WTO 64.4

Turitea CEN 222

Waipipi TRN 133

WestWind WEL 142.6

White Hill OTG 58

Table 2: Wind farms modeled for 2021 and rated capacity from NZWEA [13].

For each region r with current or consented new wind capacity we selected a representative wind farm
(in the region or a neighbouring one) as shown in Table 3. Wind farms were selected only if their 2021
generation data set was complete.

Given historical wind generation wr(p) for the representative wind farm for region r, and its rated

capacity Wr, we can compute the ratio wr(p)
Wr

that can be multiplied by current and forecast extra
wind capacity in region r to give forecast wind generation with total capacity expansion E to be

ŵr(p) =
wr(p)

Wr
(Er(2021) + αrE)

4Downloadable from https://www.emi.ea.govt.nz/Wholesale/Datasets/Generation/Generation MD
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Region αr Representative Windfarm Capacity Wr (MW)

CAN 0.0814 White Hill 58

CEN 0.0627 Tararua Stage 3 93

HBY 0.0914 Te Uku 28

OTG 0.1926 White Hill 58

TRN 0.000 Waipipi 133

WEL 0.5670 West Wind 142.6

WTO 0.0049 Te Uku 28

Table 3: Representative wind farms for regions.

where Er(2021) is the capacity of wind farms in region r in 2021, as shown in Table 4.

Region Er(2021) Eαr

CAN 0.0 81.4

CEN 522.0 62.7

HBY 0.0 91.4

OTG 94.0 192.6

TRN 133.0 0.0

WEL 202.4 567

WTO 64.4 4.9

Table 4: Locations of wind capacity (MW) for 2021 and for E = 1000.

The final step in producing load duration curves for each week i, is to reorder the series n(p) for periods
p in each week i by decreasing magnitude. We then construct a piecewise constant approximation of
the resulting decreasing curve with B pieces, where each piece b = 1, 2, . . . , B contains a set P (i, b) of
trading periods for week i. This is done using a lot-sizing algorithm that minimizes the weighted error
between the curve and its approximation. To enable peaks to be represented accurately, the weights
are chosen heuristically so that T (i, b) = |P (i, b)| is smaller when b contains peak periods. Given P (i, b)
for each week i, we assign block b the average demand (MW)

D(i, b) =

∑
p∈P (i,b)

(
d̂r(p)− ŵr(p)

)
T (i, b)

and record the “hours-per-block” T (i, b)/2. Note that ŵr(p) depends on E, so we construct a demand
file and hours-per-block file for each value of E that we wish to study.

3.6 Demand response and lost load

We assume that L(i) and the prices for lost load and demand response, as a proportion of positive
nodal net-demand, is the same at each node i ∈ N . These proportions and prices are given in Table 5
below.

4 Results

JADE was used to estimate the value of Lake Onslow operating in a steady state in 2035. Demand
duration curves were computed using 2035 forecasts of Ik, Ck, Sk, Gk,and Vk made by the Climate
Change Commission for their 2021 Draft Advice “Demonstration” scenario [8]. In contrast to the
Climate Change Commission data, we assume that Tiwai Point Aluminium smelter is still operating
in 2035 (or is replaced by some industrial base load at the same level of 570 MW).
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Proportion Price ($ / MWh)

0.025 530

0.025 740

0.050 3180

0.150 5290

0.750 10580

Table 5: Prices for demand response and involuntary lost load for load types in L(i).

Except where assumed otherwise, all gas and coal thermal generation is assumed to have been shut
down. JADE is then run in infinite-horizon mode with stagewise independent inflows (adjusted in
variance using a DIA factor of 4 sampled from historical years 1990-2019). A discount factor of 0.90
is assumed. Each run of JADE assumes a different amount E of extra wind investment, distributed
over the regions as described above. Different values of E have been tested to locate the value where
GWAP for wind is approximately equal to the LCOE for wind. This rather ad-hoc search procedure
leads to an assumed level E of wind investment that can be tested using simulation of JADE policies
over historical years 1932-2020.

Three case studies have been investigated:

(a) Wind-only: 4800MW of wind capacity is built across the country in the proportions outlined
in Table 4.

(b) Onslow: Onslow is built with 5000GWh of storage capacity and 1500MW of pumping and
generation capacity. 3725MW of wind capacity is built.

(c) Green Peakers: 500MW of peaking plant is available in Waikato, the fuel for this plant costs
$160/MWh. 3900MW of wind capacity is built.

The line capacities specified in JADE for each case are given in Table 6; these account for the different
locations of the investments for each case. The line capacities are chosen so as to relieve congestion.
We see that the necessary transmission capacities from CAN to WEL, between WEL and CEN and
between CAN and OTG are largest for the Onslow case, whereas the capacities between WTO and
CEN and from WEL to CAN are largest for the Wind-only case. The green peakers case generally
required the least transmission capacity of the three cases. These observations are consistent with
what one might expect, given the location of generation and demand.

Line (a) Wind-only (b) Onslow (c) Green Peakers

NIS ↔ AKL 300 270 300

AKL ↔ WTO 2300 2500 2300

WTO ↔ BOP 500 500 500

WTO ↔ CEN 1900 1800 1600

CEN ↔ TRN 450 450 450

CEN ↔ HBY 300 300 300

WEL ↔ CEN 1700 1900 1600

WEL → CAN 1400 1600 1200

CAN → WEL 1800 2600 1700

CAN ↔ NEL 250 250 250

CAN ↔ OTG 1100 2300 1000

Table 6: JADE line capacities for each case (MW).
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4.1 Hydro storage trajectories

Since the investments by 2035 will have a significant effect on water valuation in reservoirs, JADE
is trained using the steady-state mode with a discount factor of 0.9 for each case study. These are
evaluated by running a continuous simulation from 1932 to 2020. This means that the reservoir levels
at the end of a year continue into the beginning of the next.

Figure 2: Hydro-storage trajectories in existing reservoirs, simulated from 1932 to 2020, for each of
the cases.

We can see in Figure 2 how the distribution of storage in the existing reservoirs at the beginning of the
year is different for each case. Note that the central blue band represents the 25th to 75th percentile of
the distribution each week, and the light blue represents the 5th to the 95th percentile. The red boxes
represent variable contingent storage in Lake Tekapo. Furthermore, the black line gives the median of
the storage of all the years, and the grey lines are the storage trajectory for each of the years.

In the Wind-only case, storage is maintained at a higher level, increasing the amount of spill, whereas
with Onslow the storage at the beginning of the year is centred lower than the other cases. The reason
for this is shown in Figure 3, where we see that Lake Onslow, whose storage exceeds the capacity of
all the current reservoirs combined, is almost full at the start of 25% of years within the simulation;
this allows the other reservoirs to be maintained at a lower level, lowering the risk of spill. This is
confirmed by Figure 4, which shows distribution of spill each year (in GWh).
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Figure 3: Hydro-storage trajectories simulated from 1932 to 2020, in case (b) Onslow.
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Figure 4: Distributions of annual spilled energy (in GWh) for each case.

4.2 Marginal Water Values

As shown in Figure 5 and Figure 6 (enlarged), the distribution of marginal water values varies by case.
The Wind Only and Green Peaker cases look similar in Figure 5, but we can see from Figure 6 that
the Green Peaker 25th-percentile marginal water values are persistently higher. This is consistent with
the storage trajectories in Figure 2 that are lower for the Green Peaker case.

The distribution of marginal water values for the Onslow case is centred lower than the other two,
accounting for the extra storage in Onslow. However we can observe from Figure 5 that the maximum
marginal water values are much higher for Onslow than the other cases. In years where inflows are low
in consecutive years such as 1977 and 1978, Onslow levels become very low. Green peakers or more
wind capacity attenuates the effect of this energy shortage that is more keenly felt in the Onslow case
when these are absent.

4.3 Prices

We now consider the prices from the simulation of the three cases. Various weighted-average price
metrics are shown in Table 7. These are time-weighted average price (TWAP), load-weighted average
price (LWAP), and generation-weighted average price (GWAP) which varies by generator. The national
TWAP and LWAP prices are lowest for the Onslow case, and these prices are also similar to the GWAP
price for wind generation, and generation from Onslow. However, the cost of pumping is much lower,
at about $18/MWh. The wind GWAP for the Wind Only and Green Peakers cases are similar at
$65-67, this is approximately the estimated LCOE for wind generation. However, the LWAP average
prices are much higher in the other cases with $115/MWh for the Green Peakers case, and $181 for
the Wind Only case. The TWAP prices are about 20% lower in each case. The GWAP for the Green
Peakers is $591/MWh, this is much higher than the $160/MWh SRMC for the plant, but given the
plant’s low capacity factor, peaking plant makes an average annual operating surplus of $315,000 on
each MW of capacity.
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Figure 5: Marginal water value simulated from 1932 to 2020 for each case.

Figure 6: Marginal water value simulated from 1932 to 2020 for each case (y-axis truncated to $0–
$400).
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Metric (a) Wind-only (b) Onslow (c) Green Peakers

TWAP

LWAP

Wind GWAP

Hydro GWAP

Peaker GWAP

Pump GWAP

Release GWAP

145.1 72.4 99.0

181.0 75.8 116.0

65.0 67.1 65.7

237.1 64.0 126.5

NA NA 590.6

NA 18.3 NA

NA 67.6 NA

Table 7: Price metrics ($ / MWh).

Finally, the GWAP earned by the hydro plants varies considerably over the three cases. In the wind-
only case, the hydro plants provide backup capacity when the wind isn’t available, leading to a GWAP
($237.2/MWh) that exceeds the LWAP ($181.0/MWh). For the case with Onslow, the hydro plants’
GWAP ($64.0/MWh) is lower than the LWAP ($75.8/MWh). For the case with green peakers, the
hydro GWAP ($126.5/MWh) is only slightly higher than the LWAP ($116.0).

In appendix A1, we plot the weekly national energy storage. Figures 16. 18, and 20 show how LWAP
prices vary for the sequence of 89 simulated years for each of the cases. This shows how the prices
vary throughout the years and how sequences of wet and dry years can lead to low and high prices,
respectively. It is interesting to note, for example, in the period from 2005 to 2008, shown for all three
cases in Figure 7, a sequence of dry and moderate years leads to extremely high prices in 2008 for all
three cases, but the Onslow case fares worst of all, since limited wind has been built, and there are no
peaking plants.
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Figure 7: Storage and LWAP for each case from 2005 to 2008.

Recall that for the investment in new wind generation capacity, we have found the capacity such that
the GWAP for wind (over the sequence of 89 historical years) approximately matches the LCOE for
wind investment. However, it is important to realise that the GWAP will vary each year, which presents
a risk for potential investors; this variability is depicted in figures 8 and 9. To create these plots the
steady-state hydro policies were simulated for a sequence of 1000 uniformly sampled hydrological years.
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Figure 9: Annual GWAP for wind. Each dot represents a single year from the sequence of 89 years.

4.4 Lost load

Simulating the steady-state hydro policies over the hydrological years from 1932-2020 yields the dis-
tribution of lost load shown in Figure 10. These show that Onslow generally reduces energy shortages
in comparison with the other cases. In some rare circumstances, the Onslow case will experience some
very high lost load.

4.5 Costs

Simulation over the sequence of 89 historical inflows gives an average annual load shedding cost of
$314.4m for the wind-only case, $96.4m for the Onslow case and $81.8m for the Green Peakers case;
in addition the Green Peakers case incurs, on average, an additional $81.8m per year in fuel costs. All
these costs, of course, vary depending on the hydrological conditions each year, as shown in Figure 11.5

The wind-only case builds 1075MW more wind than the Onslow case. Assuming a capacity factor for
wind of 0.4, and converting the previously assumed $65 / MWh into an annual cost, gives:

$65/MWh× 8760 hours× 1075MW× 0.4 = $244.8m.

On the other hand, the annualised cost of Onslow using a discount factor of 0.9 over 60 years can be
computed as follows:

$15.7b× 1− 0.9

1− 0.960
= $1.573b.

5These costs do not include non-financial costs, such as violations of flow-rate consents or utilisation of contingent
storage.
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Figure 10: Smoothed distributions of annual lost load (in MWh) for each case (transformed using
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0.0

0.5

1.0

1.5

6 7 8 9
log10(Annual operating costs $)

de
ns

ity

Case

(a) Wind−only

(b) Onslow

(c) Green Peakers

Figure 11: Smoothed distributions of annual load shedding + fuel costs (in $) for each case (the data
has been transformed using log10).

Under these assumptions the Onslow case would be $1.11b more expensive per annum (on average)
than the wind-only case, and it would have increased cost volatility, as shown in Figure 11.

Of course it would be possible to assume a lower discount rate. However, if we only changed the
discount rate for Onslow, leaving all other costs the same as above, we would need to assume a
discount rate of 2.5% in order for the Onslow case to reach parity (in expectation) with the wind-only
case.

4.6 Onslow NPV

Given Onslow’s assumed round-trip efficiency of 77%, we can compute the average annual operating
profit for Onslow in each year. Since the order of wet years and dry years is important when computing
the NPV for Onslow, we have simulated 1000 sequences of 25 years selected uniformly (and with
replacement) from the years 1932 to 2020. Using a discount factor of 0.9, the simulated NPV varies
considerably between sequences of hydrological years. However, no sequence recovers the estimated
$15.7b cost of constructing and commissioning Onslow, with only 1 out of the 1000 sequences recovering
$4b. The distribution of the NPVs after 25 years are shown in Figure 12a. Figure 12b shows the NPV
over time, with the dark- and light-blue shaded regions representing the 25th to 75th and the 5th to
95th percentiles, respectively. This negative NPV means that (given all the assumptions of the model)
the Lake Onslow pump-storage proposal would not be commercially viable in a perfectly competitive
market.

It is instructive to understand the sequence for which Onslow attains the highest NPV (shown in red
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Figure 12: NPV distribution for Onslow: (a) after year 25 and (b) over time $ simulated over 1000
sequences of 25 hydrological years.

in Figure 12b). This sequence begins with two moderate years, allowing Onslow to fill partially, and
then an extremely dry year (1932), where Onslow did not start with enough energy to avoid significant
load shedding; this is shown in figures 13 and 14. Later in the sequence Onslow is emptied another
time (over the 1950 and 1971 hydrological years). We see that Onslow makes a significant profit both
times, since load-shedding is required to manage the energy shortfall, with prices rising sharply.

It is important to note that prices are low in most years; however, since the wind capacity is optimized
to recover its capital costs from the spot market in expectation, the wind capacity is chosen such that
a small proportion of years will experience an energy shortage with elevated prices. The majority of
the capital costs will be recovered in the dry years where Onslow’s starting storage is low. Due to
the large, but rare, shortage events that we observe, there are significant financial (price) and physical
(energy shortfall) risks for market participants.
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Figure 13: Onslow storage (GWh) and the corresponding marginal water value ($/MWh) over the
most profitable sequences of hydrological years sampled.
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Figure 14: National storage (GWh) and the corresponding LWAP ($/MWh) over the most profitable
sequences of hydrological years sampled.

5 Conclusions

This paper has described some experiments with a steady-state reservoir optimization model of the
New Zealand electricity generation and transmission system. These experiments have been designed
to evaluate the operation of a proposed pumped-storage scheme at Lake Onslow in the year 2035 and
compare it with two counterfactual cases that operate without the scheme. The experiments we report
on are limited in scope, and should ideally be repeated for other future years (e.g. 2050) and different
assumptions about demand growth and risk aversion, to enable confident estimates to be made of the
range of NPVs that might come from different investment options. Notwithstanding these limitations,
the experiments show some interesting results that we now summarize.

5.1 Onslow decreases wholesale electricity prices

As shown in Table 7 the presence of Lake Onslow results in lower LWAPs than counterfactual cases.
GWAPs for all generators are also lower than in counterfactual cases. Although this appears attractive
from a distributional perspective, several observations are worth making.

1. The prices of course do not cover the capital cost of Onslow that must be recovered from other
means.

2. The models assume that only wind investment is optimized. Capacity of existing renewable
generating plant is assumed to remain in the market. It is possible that some of these plants
have GWAPs lower than their LCOE, so they would either seek some capacity remuneration
outside the wholesale energy market or be shut down.

3. More transmission capacity is needed to handle increased demand, with the largest transmission
increase needed in the Onslow case.
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5.2 Onslow depresses wind investment

The three models we have tested have different levels of additional wind investment. Wind capacity
has been increased in each case to the point at which the GWAP covers the levelized cost of wind
investment. With Onslow, this break-even point is at 3725 MW; without Onslow or peakers it is 4800
MW; and without Onslow but including peakers it is 3900 MW. The presence of Onslow has resulted
in a lower level of wind investment than counterfactual models. As shown in Figure 8 the wind GWAP
also has higher variance for the Onslow case than for the counterfactuals, so one might expect an
even lower break-even level of wind investment in this case. This result runs counter to the intuitive
conjecture that Onslow will provide a greater incentive for wind investment as pumping will provide a
floor on wind GWAP. Figures 8 and 9 show that this floor can be very low especially in years where
Onslow has plenty of water. The extra storage of Onslow lowers marginal water values in many (wet)
years as shown by the plots in Appendix A.2; wind will not cover costs in the wettest of these years. In
some years (e.g. 1978 and 2008 in A.2) Onslow experiences consecutive dry years and marginal water
values become very high. Wind generation during these periods earns very high rents.

Because it lowers marginal water values, Onslow decreases wholesale electricity prices in most periods
apart from those where lake levels are very low and wind is not blowing when prices are set by shortage.
In contrast, the presence of green peakers can help reduce prices in peak periods irrespective of reservoir
levels, but results in higher marginal water values since it has no Onslow storage. Given the same
wind investment, GWAPs for wind will be lower in the Onslow case which incentivizes higher levels of
wind investment when there are peakers. Observe that water values and hence GWAPS become even
greater for the counterfactual without peakers or Onslow, leading to even greater incentive for wind
investment.

5.3 Onslow reduces shortages

Figure 10 shows that Onslow generally reduces energy shortages in comparison with the other cases.
However the figure shows that Lake Onslow does not eliminate the dry-winter energy problem if levels
of wind investment are chosen to cover their LCOE. There will be inflow sequences (e.g. in consecutive
dry years) where extreme energy shortages and very high prices will occur.

5.4 Further experiments

The results described in this paper are a first step towards a comprehensive analysis of the costs
and benefits of the Lake Onslow scheme and its alternatives. A striking feature of our results is
the subtlety of the interplay between the different components of the market, sometimes resulting
in counterintuitive conclusions that arise from the effects of random inflows and wind in conjunction
with a steady-state operating model. A stochastic optimization model like JADE is essential for
understanding the resulting tradeoffs between different investment options.

We propose to continue this study with a suite of experiments that will enrich our understanding of
this problem. We briefly describe these here.

1. The investment in wind has been calibrated so that the expected price over the simulated 89
years, approximately covers the annualised cost of wind capacity. It is important to note that
this assumes that investors are risk-neutral with a fixed discount rate, which might be unrealistic.
Moreover, the level of risk that wind investors face is not uniform across the cases investigated;
for example, with Onslow built, the majority of years have low prices and a small number of years
have very high prices. In addition, for the Onslow case, the expected price is very sensitive to the
amount of wind. This occurs because Onslow provides significant inter-year storage, smoothing
water values between years, meaning that the water value becomes tied to the long-run balance
between energy coming into the system (wind, and inflows) and the demand. Since the first
demand-response tranches shed load at $530, the average prices quickly change from close to $0
to near to $530, as the wind capacity is decreased. These risks associated with investment should
be studied comprehensively.
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2. In this study, for each case, the transmission grid has been augmented to ensure no congestion
in 99.9% of periods. Depending on the cost of transmission line upgrades, it may be cheaper to
allow for congestion to occur more often. This can be investigated using the JADE model, but
some additional assumptions about costs and capacities of transmission upgrades must be made.

3. The steady-state distribution of water values has been computed using a discount factor of 0.9.
The choice of this value has been made for convenience. A comprehensive analysis of the industry
should enable us to provide a more defensible estimate of the true discount factor to be used in
comparing net present values.

4. Reserve capacity has not been considered in this study. JADE does not currently include reserve
in its weekly representation of a competitive spot market. However, from this study we see
that, due to the shut down of thermal plant, shortages of generation capacity may become more
frequent, and an accurate estimate of reserve prices may be needed when determining the optimal
investment in new capacity.

5. A final investment decision on Lake Onslow is not expected until 2026, so given a 9-year build
time it will not be available for pumping until after 2035. The 2035 study carried out here should
be repeated for estimated demand in 2040 and 2050.
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A Total energy storage
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Figure 15: Total storage (GWh) over 89 historical hydrological years for the wind-only case, coloured
by the weekly GWAP for wind generation.
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Figure 16: Total storage (GWh) over 89 historical hydrological years for the wind-only case, coloured
by the weekly LWAP.

23



2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52

13 26 39 52 13 26 39 52

0

2500

5000

7500

0

2500

5000

7500

0

2500

5000

7500

0

2500

5000

7500

0

2500

5000

7500

0

2500

5000

7500

0

2500

5000

7500

Week

To
ta

l H
yd

ro
 S

to
ra

ge
 (

G
W

h)

   1.0   20.1  403.4 8103.1
GWAP Wind ($ / MWh)

Figure 17: Total storage (GWh) over 89 historical hydrological years for the Onslow case, coloured by
the weekly GWAP for wind generation.
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Figure 18: Total storage (GWh) over 89 historical hydrological years for the Onslow case, coloured by
the weekly LWAP.
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Figure 19: Total storage (GWh) over 89 historical hydrological years for the green peakers case,
coloured by the weekly GWAP for wind generation.
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Figure 20: Total storage (GWh) over 89 historical hydrological years for the green peakers case,
coloured by the weekly LWAP.
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B Onslow Operations
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Figure 21: Onslow generation (in GWh produced) over 89 historical hydrological years, coloured by
price received.
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Figure 22: Onslow pumping (in GWh consumed) over 89 historical hydrological years, coloured by
price paid.
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Figure 23: Onslow storage (in GWh) over 89 historical hydrological years, coloured by the marginal
water value at Onslow.
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C Green Peaker Operations

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944

13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52 13 26 39 52

13 26 39 52 13 26 39 52

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

Week

P
ea

ke
r 

G
en

er
at

io
n 

(G
W

h)

   1.0   20.1  403.4 8103.1
Price ($ / MWh)

Figure 24: Green peaker generation (in GWh) over 89 historical hydrological years, coloured by price
received.
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D Load-weighted Average Prices
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Figure 25: LWAP ($/MWh) simulated from 1932 to 2020 for each case, on the left the full price range
is shown; on the right, prices are truncated at $1600/MWh.
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Figure 26: LWAP ($/MWh) simulated from 1932 to 2020 for each case.
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Figure 27: LWAP ($/MWh) simulated from 1932 to 2020 for each case (shown on a log scale).
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