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Sample average approximation-based stochastic dynamic programming and model predictive control are two

different methods of approaching multistage stochastic optimization. Model predictive control—despite a

lack of theoretical backing—is often used instead of stochastic dynamic programming due to computational

necessity. For settings where the stage reward is a convex function of the random terms, the stage dynamics

are deterministic, and the random variables are stage-wise independent, we show that model predictive con-

trol is equivalent to a distributional robustification of stochastic dynamic programming with an ambiguity

set that consists of distributions with matched means. This motivates tools to compare the out-of-sample

performance of each method. We study a simple inventory control problem which illustrates their differ-

ences, and find that model predictive control can outperform stochastic dynamic programming when the

distribution of the underlying random variable is skewed or has weight in its tails. The results are supported

by analytic and numeric examples.
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1. Introduction

In practice multistage stochastic optimization problems often have to be solved without explicit

knowledge of the distributions involved. Although one can create scenario-tree approximations of

such problems based on samples of the random variables in each stage (called sample average

approximation or SAA), the number of samples required to solve the true problem to a specified

accuracy grows exponentially with the number of stages (Shapiro and Nemirovski 2005, Shapiro
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2006) and the resulting optimization problems are computationally intractable for a large number

of samples (Dyer and Stougie 2006, Shapiro 2011). It follows that for problems with a large number

of stages, the SAA method may only be able to be practically applied when there is an insufficient

number of samples to ensure good performance; we are interested in the performance of SAA in

this regime.

Multistage stochastic optimization problems become easier when the random variables are stage-

wise independent or follow a Markov process and the problem can be formulated as a stochas-

tic optimal control problem. In principle, such problems are amenable to solution by stochastic

dynamic programming methods as long as the dimension of the state variable is not too large. But

this requires knowledge of the distribution of the random variables, whereas we are interested in

the case where this must be deduced from samples of past values.

There are alternatives to the use of dynamic programming for stochastic optimal control prob-

lems. In many practical settings (e.g., where state dimension is high and controls and states are

subject to complicated constraints) model predictive control (MPC) can be used. MPC algorithms

are suboptimal control methods, which replace the future value function with a cheap-to-evaluate

but not necessarily consistent approximation. This enables MPC algorithms to incorporate compli-

cated constraints while being efficiently implementable in situations with a large number of state

dimensions and stages (Bertsekas 2005). For a survey of applications, see (Mayne 2014, Mesbah

2016).

In this paper we consider a relatively simple setting in which the state variables and constraints

are deterministic, and the random variables appearing in the stage rewards are stage-wise indepen-

dent. We study a simple form of MPC that fixes random variables at their expectation and solves

a deterministic optimal control problem. (One can either assume that the expectations are known

exactly, or estimate them from a random sample. We focus on the second case in this work.) This

determines a control that is applied in the first period. The state then evolves and the process is

repeated.

Out-of-sample comparison of SAA and MPC by simulation shows that MPC does well in certain

circumstances (Martin 2021). However, the reasons for this have not been fully explored. Although

the SAA and MPC solutions coincide when the certainty equivalence property holds (Theil 1957,

Ziemba 1971), this does not explain the success of MPC under more general conditions. Our aim

in this paper is to advance our understanding of SAA and MPC applied to stochastic control

problems when the number of samples is insufficient to ensure SAA’s good performance. To do

this we first show that MPC can be viewed through the lens of distributionally robust optimization,

which is often applied in stochastic optimization problems when the number of samples is limited.

By taking a conservative approach and optimizing over a set of distributions that are close to the
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empirical sample distribution, distributionally robust solutions can achieve better performance on

the out-of-sample problem (Esfahani and Kuhn 2018, Anderson and Philpott 2022).

To gain a deeper understanding, we then restrict attention to a specific class of stochastic

inventory control problems with a one-dimensional state variable. This inventory problem involves

decisions on how much of the existing inventory to sell at the current price, given uncertainty on

the future prices that will occur. The problem is simple enough to admit a closed-form optimal

policy for any bounded distribution for the uncertain random variable, but at the same time is

able to capture critical aspects of the relative performance of SAA and MPC.

Given the inventory problem and some ground-truth distribution for the random (price) variable

we can compute an optimal SAA policy for any given sample of the random variable and hence

compute its expected value under the true distribution. Similarly, we can compute an optimal MPC

policy based on the average of the same sample, and compute its expected value under the true

distribution. These two out-of-sample values provide statistics that can be used to understand the

sensitivities of each method to the specific samples from the random variable and the parameter-

ization of the underlying problem. Furthermore, the expectation of these two statistics over the

sampling distribution gives a measure of the average performance of each approach. Our study is

motivated by the question:

Under what conditions does model predictive control outperform stochastic dynamic program-

ming based on sample average approximation?

We observe that the performance of SAA can suffer when the random variables have ground-

truth probability distributions with significant weight in the tails. Small samples drawn from such

distributions can have empirical distributions that look very different from the ground-truth, and

yield SAA policies that can linger in regions of state-space with a low expected future reward which

turns out to be very expensive over an infinite horizon.

In cases where the constraints are deterministic, the stage-reward is a convex function of the

random variable, and the random variable is stage-wise independent, MPC attenuates this effect

due to its distributionally robust properties—its conservative nature drives it towards regions of

state-space with a future reward less dependent on randomness, and its performance under the

ground-truth distribution is therefore less sensitive to the effects of sampling.

The paper is arranged as follows. We begin in Section 2 by formulating a general stochastic

optimal control problem and showing that its solution via MPC is equivalent to a distributional

robustification of its solution via stochastic dynamic programming. In Section 3 we study the

out-of-sample value of a predetermined policy applied to the true problem and prove a lemma
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which allows us to compare the out-of-sample value of two different policies. Then in Section 4

we introduce our one-dimensional stochastic inventory control problem and derive a formula for

its optimal solution as a function of the price probability distribution. This formula can be used

to determine an optimal SAA policy based on the empirical distribution of price samples, as well

as an optimal MPC policy based on the sample-average price. In Section 5 we compare the out-

of-sample performance of these two policies under some simple assumptions on the ground-truth

price distribution, and provide conditions on the price samples which ensure that the MPC policy

performs at least as well as the SAA policy. In the final two sections we report on some examples.

Section 6 assumes an exponential distribution for price and shows that the expected out-of-sample

improvement from using MPC instead of SAA becomes arbitrarily large as the discount factor

approaches 1. Section 7 includes some numerical experiments that support the theoretical results

of previous sections. The paper then concludes with a discussion in Section 8. The proofs of this

paper are deferred to the appendices.

2. Stochastic optimal control

To study the performance of SAA and MPC, we will look at the following stochastic optimal control

problem

SOC: sup
{u0,u1,...}

E

[
∞∑
t=0

βtC(xt, ut, ξ̃t)

]
where xt is a state and ut is a control satisfying

xt+1 = f(xt, ut), t= 0,1, . . .

ut ∈ U(xt), t= 0,1, . . . ,

and ut depends only on the previous states x1, x2, . . . , xt and realizations of the random variables

ξ̃1, ξ̃2, . . . , ξ̃t (i.e. the standard non-anticipativity constraints). The value of x0, the initial state at

t= 0, is given. Here β ∈ (0,1) is a discount factor and C is a stage-reward function. Throughout

this paper we use superscripts to denote indexing with time, though βt is the tth power of the stage

discount factor β. We also use tildes to denote random variables.

Since the dynamics are deterministic, this is equivalent to a problem in which the control yt

is simply the state in the next period, defined by yt = f(xt, ut). Letting Y(xt) = f(xt,U) we can

rewrite the dynamics as

xt+1 = yt, t= 0,1, . . .

yt ∈Y(xt), t= 0,1, . . . ,
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and we rewrite the stage rewards so that

C(xt, yt, ξ̃t) = sup
{ut:f(xt,ut)=yt}

C(xt, ut, ξ̃t),

where we assume that f is such that this supremum is achieved. Throughout our discussion we

will use this form of the problem, in which the control yt is simply the state at the next period.

To keep our analysis simple, we make the following assumption:

Assumption 1.

(i) The states xt are contained in a compact and convex subset X of Euclidean space and the

set valued function Y :X 7→X is non-empty, compact-valued, and continuous.

(ii) The multivariate random variables ξ̃t take values in an open subset Ξ of Euclidean space,

and are stage-wise independent and identically distributed with probability distribution P , and the

expectation E[ξ̃t] is well-defined and finite.1

(iii) The stage-reward function C :X ×X ×Ξ 7→R is continuous.

Under Assumption 1 (ii) we drop dependence of the random variable ξ̃t on the index t and

denote each ξ̃t by ξ̃. For (x, ξ)∈X ×Ξ let the value function V :X ×Ξ 7→R be defined through the

dynamic programming functional equation

V (x, ξ) = sup
y∈Y(x)

{
C(x, y, ξ)+βE

[
V (y, ξ̃)

]}
. (1)

The connection between SOC and (1) is well known. Using the results of (Stokey et al. 1989,

Chapter 9), under Assumption 1 and if P has compact support, the identity (1) has a unique and

continuous solution V :X ×Ξ 7→R and SOC has a finite optimal value that is attained and equal

to E[V (x0, ξ̃)]. For a given (x, ξ)∈X ×Ξ, the optimal control under dynamic programming is then

any y :X ×Ξ 7→ X which attains the supremum in (1).

To determine the MPC policy first define the functional equation

VM(x, ξ) = sup
y∈Y(x)

{
C(x, y, ξ)+βVM(y,E[ξ̃])

}
. (2)

Notice that if µ=E[ξ̃] is well-defined and finite, then (2) shares the same existence and concavity

properties as (1). Observe that a solution to (2) can be obtained through first solving the determin-

istic recursion VM(x) = supy∈Y(x){C(x, y,µ) + βVM (y)} in which it is assumed that ξ̃ always takes

its expected value. Then (2) has value supy∈Y(x) {C(x, y, ξ)+βVM (y)}. For a given (x, ξ) ∈X ×Ξ,

the optimal control under MPC is then any y :X ×Ξ 7→ X which attains the supremum in (2).

1 Throughout this paper, in all probability spaces we assume that the corresponding σ-algebra is the Borel σ-algebra.
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2.1. A distributionally robust interpretation

We now demonstrate a connection between MPC and distributionally robust optimization. Let

P be an ambiguity set of probability distributions on Ξ. Now define the distributionally robust

functional equation2

VR(x, ξ) = sup
y∈Y(x)

{
C(x, y, ξ)+ inf

Q∈P
βEQ

[
VR(y, ξ̃)

]}
. (3)

For ξ ∈Ξ denote by δξ the point-mass distribution at ξ.

Theorem 1. Under Assumption 1, if the function C(x, y, ·) is convex for all x, y ∈X , the expec-

tation µ= EP [ξ̃] is well-defined and finite, and P is chosen so that δµ ∈ P and EQ[ξ̃] = µ for all

Q∈P, then the DRO recursion (3) has the same solution as the MPC recursion (2).

Theorem 1 shows that the DRO value function and optimal policy is the same as the MPC

value function and optimal policy for an ambiguity set chosen to have a matched mean. Use of

ambiguity sets in which one or more moments are fixed is a classical approach in distributionally

robust optimization (see the seminal work (Scarf 1958)). It is easy to see that Theorem 1 also holds

in the finite-horizon setting or when the distributions of ξ̃t differ between stages.

Since distributionally robust estimates can be less susceptible to over-fitting than sample average

estimates, Theorem 1 motivates us to study the conditions under which the MPC policy outper-

forms the SAA policy. We develop tools for this analysis in the next section.

3. Comparing policies

When studying out-of-sample performance for specific policies, we do not need to use the dynamic

programming functional equation and we can drop the requirement for P to have compact support.

We make the following Assumption 2 which replaces the compact support requirement with an

integrability condition when Ξ is unbounded.

Assumption 2. There exists a positive valued random variable L(ξ̃) with E[L(ξ̃)] < ∞, and

|C(x, y, ξ)| ≤L(ξ) for all x, y ∈X and almost every ξ ∈Ξ.

Our approach to compare two different policies is to consider starting with one policy and then

switching to the other policy after a certain number of stages. A policy of interest π :X ×Ξ 7→ X is

said to be feasible if it satisfies the constraint π(x, ξ)∈Y(x) on X ×Ξ and is measurable. Observe

that for a feasible policy under Assumption 1 the function C(x,π(x, ·), ·) is measurable for all x∈X

2 In multistage distributionally robust optimization, there are two different approaches to formulating the robust
problem: recursively evaluating the worst-case distributions in each stage, or evaluating the worst-case distributions
for each stage in advance of any realised states and random variables (Pichler and Shapiro 2021). In the setting of
Theorem 1, it can be seen that both of these approaches are equivalent.
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due to continuity. Let V̄π(x
0) be the value of the SOC objective function under the policy π starting

from initial state x0. We have

V̄π(x
0) =E

[
∞∑
t=0

βtC(xt, π(xt, ξ̃t), ξ̃t)

]
=

∞∑
t=0

βtE
[
C(xt, π(xt, ξ̃t), ξ̃t)

]
,

where the exchange of expectation and infinite summation follows from Assumption 2 and the

Lebesgue Dominated Convergence Theorem using L(ξ̃). Since each term in the sum on the right-

hand side is bounded and β < 1, it follows that V̄π is also bounded on X .

Having defined V̄π as a function of the initial state, it satisfies the functional equation

V̄π(x) =E
[
C(x,π(x, ξ̃), ξ̃)+βV̄π(π(x, ξ̃))

]
.

Definition 1. For feasible policies π, τ :X ×Ξ 7→ X , let

V̄ 1
(π,τ)(x) =E

[
C(x,π(x, ξ̃), ξ̃)+βV̄τ (π(x, ξ̃))

]
,

and for t > 1, let

V̄ t
(π,τ)(x) =E

[
C(x,π(x, ξ̃), ξ̃)+βV̄ t−1

(π,τ)(π(x, ξ̃))
]
. (4)

The value V̄ t
(π,τ)(x) is the out-of-sample value starting from initial state x if the policy π is used

for the first t stages and then the policy τ is used forevermore. It is clear that V̄ t
(π,τ) is well-defined

and bounded in the same way that V̄π and V̄τ are.

Lemma 1. Under Assumptions 1 and 2, if π, τ : X × Ξ 7→ X are feasible policies and V̄τ (x) ≥

V̄ 1
(π,τ)(x) for all x∈X , then V̄τ (x)≥ V̄π(x) for all x∈X .

Rather than having to calculate integrals directly to compare out-of-sample values, Lemma 1

allows us to check a uniform condition involving recursions which have similar forms. This will

prove useful in Section 5.

4. A stochastic inventory control problem

To study the performance of SAA and MPC, we will look at a particular stochastic control prob-

lem within the general stochastic control setting developed in Section 2. We formulate the one-

dimensional stochastic inventory control (SIC) problem

SIC: max
{y1,y2,...}

E

[
∞∑
t=0

βt (p̃t(xt − yt)−C(yt))

]
where xt and yt satisfy

xt+1 = yt, t= 0,1, . . .

yt ∈ [0, xt] , t= 0,1, . . .
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and x0 ≥ 0. As with the general problem SOC a decision at time t is made depending only on

x1, x2, . . . , xt and realizations of p̃1, p̃2, . . . , p̃t. Here p̃t is a random per-unit sales price (henceforth

price) that is independent and identically distributed having distribution P with finite expectation,

and C : R+ 7→ R+ is a storage cost function. The function C is increasing, strictly convex and

differentiable with derivative c and C(0) = 0. Because c is a strictly increasing continuous function,

we may define an inverse function, c−1, on the range of c. We can easily check that Assumptions 1

and 2 hold for this example.

The problem SIC can be interpreted as the problem facing a merchant who maximizes expected

discounted reward by at each time t selling at a price realization pt down to an inventory level

yt less than or equal to their initial inventory xt, while incurring a storage cost C(yt) on their

remaining inventory. This model may be applied in a number of situations, such as an electricity

distributor with a fixed battery needing to decide when to dispatch electricity or an investor who

needs to decide when to sell a holding of shares.

For inventory x ≥ 0 and price p, the optimum expected discounted reward from this point on

can be found from the dynamic programming functional equation

V (x,p) = max
0≤y≤x

{p(x− y)−C(y)+βE [V (y, p̃)]} , (5)

where the optimal inventory is given by any maximizing y. When P has compact support, using

the results of (Stokey et al. 1989, Chapter 9) equation (5) has a unique and continuous solution

V : R+ × R 7→ R and the function V (·, p) is concave. With P having compact support, a simple

application of the Dominated Convergence Theorem shows E[V (·, p̃)] is continuous, and it is also

concave. It follows that the superdifferential ∂xE[V (x, p̃)] is non-empty and compact.

Denote the projection of f ∈R onto the closed interval [a, b]⊂R by (f)[a,b] =max{a,min{b, f}}.

We let (f)[a,∞) =max{f, a} and (f)+ =max{f,0}.

Proposition 1. If P has compact support, for inventory x ≥ 0 and price p, SIC has optimal

solution

y(x,p) = c−1
(
(βE[(p̃− p)+] +βp− p)[c(0),c(x)]

)
.

Proposition 1 shows that for a price p there is a finite target inventory

c−1
(
(βE[(p̃− p)+] +βp− p)[c(0),∞)

)
at which the marginal cost of storage is equal to the discounted expected increase in the random

price above p in the next stage. This is the value limx→∞ y(x,p), and for simplicity we supress
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dependence on the first argument and denote this by y(p). The optimal SIC policy reduces the

current inventory level x to y(p) if it is above this level, and does nothing otherwise. Conversely, for

any inventory level x, there is a minimal offer price p(x) required for sales to be worthwhile: this

is the inverse function of y(p) on the range [0,∞), i.e. the p that solves y(p) =min{x, c−1(βE[p̃])}.

Note that p(x) is well-defined since βE[(p̃− p)+] + βp− p is continuous, strictly decreasing, and

unbounded below in p when β < 1.

Proposition 1 makes no assumptions about the probability distribution P , except that it has

compact support. Thus P could have a density on [a, b], or could be an empirical distribution on

N price samples p1, p2, . . . , pN which assigns probability 1
N

to each sample, giving the SAA policy

yS(x,p) = c−1

((
β
1

N

N∑
i=1

(pi − p)+ +βp− p
)
[c(0),c(x)]

)
. (6)

Let p̄= 1
N

∑N

i=1 pi. The MPC policy can be obtained from Proposition 1 by using the probability

distribution that assigns probability 1 to the sample average p̄, giving

yM(x,p) = c−1

((
β
(
p̄− p

)
+
+βp− p

)
[c(0),c(x)]

)
. (7)

Denote the optimal target inventory function for the SAA policy by

yS(p) = c−1

((
β
1

N

N∑
i=1

(pi − p)+ +βp− p
)
[c(0),∞)

)
(8)

and its inverse function by pS, and similarly for the MPC policy by yM and pM respectively. It is

easy to see that the value pS(x) is increasing in each pi, and this has a natural explanation: the

SAA policy foresees higher prices in the future and therefore requires a higher price before any

sales. Clearly pS(x)≤ pN since pN is the highest price the SAA policy foresees as possible.

Depending on the samples p1, p2, . . . , pN the policy obtained could either pay too much in storage

costs by selling too little inventory, or not be able to take full advantage of future high prices having

sold too much inventory. By Jensen’s inequality, E[(p̃−p)+]≥ (E[p̃]−p)+, and hence yS(x)≥ yM(x).

Thus, the MPC policy decides that it is worthwhile to sell at a lower price than the SAA policy

does. It is then clear that pS(x)≥ pM(x) since these are the minimal offer prices required for sales

under each policy.

5. Out-of-sample performance

The following assumption allows us to study the out-of-sample performance of the sample-based

policies derived using Proposition 1 even when the underlying price distribution has unbounded

support.
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Assumption 3. The probability distribution P has non-negative support, a finite mean, and no

atoms.

Note that under Assumption 3, for x ≥ y ≥ 0 the term |p̃(x − y) − C(y)| ≤ p̃(x − y) + C(y)

with E[p̃(x− y) +C(y)] finite. This is equivalent to Assumption 2 in SOC. For N price samples

p1, p2, . . . , pN we form the SAA and MPC policies defined by (6) and (7) respectively. It follows

that the value of the SIC problem if the possibly sub-optimal SAA policy is used out-of-sample

from initial state x0, which we denote by V̄S(x
0), is well-defined as in (3) and satisfies the functional

equation

V̄S(x) =E
[
p̃(x− yS(x, p̃))−C(yS(x, p̃))+βV̄S(yS(x, p̃))

]
.

Similarly, the value of the SIC problem if the possibly sub-optimal MPC policy is used out-of-

sample from initial state x0, which we denote by V̄M(x
0), is well-defined and satisfies the functional

equation

V̄M(x) =E
[
p̃(x− yM(x, p̃))−C(yM(x, p̃))+βV̄M(yM(x, p̃))

]
.

5.1. Derivative of the expected value function

Before making comparisons between V̄S(x) and V̄M(x) we will first calculate their derivatives with

respect to the initial inventory.

Proposition 2. Under Assumption 3, for any x≥ 0 the derivatives d
dx
V̄S(x) and d

dx
V̄M(x) are

given by
d

dx
V̄S(x) =

E[p̃|p̃≥ pS(x)]P[p̃≥ pS(x)]− c(x)P[p̃ < pS(x)]

1−βP[p̃ < pS(x)]

and
d

dx
V̄M(x) =

E[p|p≥ pM(x)]P[p≥ pM(x)]− c(x)P[p < pM(x)]

1−βP[p < pM(x)]
.

Proposition 3. Assume P has a probability density function f . Under Assumption 3, if

c(y)≥ β

∫ ∞

pS(y)

pf(p)dp

for all y ∈ [0, x], then V̄M(x)≥ V̄S(x). That is, the MPC policy performs better than the SAA policy

out-of-sample.

Suppose p̃1, p̃2, . . . , p̃N are independent and identically distributed samples from P which has

density f . For any realization of these samples, Proposition 3 requires that c(y)≥ β
∫∞
pS(y)

pf(p)dp

for all y ∈ [0, x]. Without loss of generality, assume p̃1 ≤ p̃2 ≤ . . .≤ p̃N and recall pS(y)≤ p̃N . Observe

that the term (p̃N − p)+ in (8) is strictly increasing in p̃N at the point p= pS(y) where yS(p) = y.

It follows that the minimal offer price pS(y) which solves yS(p) = y is strictly increasing in p̃N . The
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term
∫∞
pS(x)

pf(p)dp is then decreasing in p̃N and eventually vanishes. When f has infinite support

we will occasionally sample a p̃N that is sufficiently large for the inequality c(x)≥ β
∫∞
pS(x)

pf(p)dp

to hold for all y ∈ [0, x]. So we are more likely to encounter samples where V̄M(x0)≥ V̄S(x0) when

f has more weight in the (high price) tail of the distribution.

Since the terms V̄S(x0) and V̄M(x0) are themselves random (determined by the samples

p̃1, p̃2, . . . , p̃N), Proposition 3 does not say anything explicitly about the expected out-of-sample

performance of MPC and SAA with respect to the sampling distribution. In fact, in most appli-

cations it is likely that there will always be some values of the random variables which result in

MPC outperforming SAA, so Proposition 3 is not surprising. However, Proposition 3 demonstrates

how the performance of SAA is affected by the parameterization of the SIC problem: the SAA

policy can be misled by price samples with large values, which cause it to hold on to inventory for

too long. Consequently, heavy-tailed distributions, which occasionally yield samples with particu-

larly large values, will negatively impact SAA’s expected out-of-sample performance. MPC—due

to its distributionally robust properties—more quickly sells down to lower storage cost levels and

is protected.

If c(0) = 0, then the premise of Proposition 3 requires pS(0) to be equal to the upper limit of the

support of f and consequently p̃N to be at least as large. This occurs with measure 0. But here

the failure of Proposition 3 is to be expected; when c(0) = 0, for an infinitesimal inventory level

selling inventory does not change the storage cost incurred, so waiting for higher prices by using

the SAA policy instead of the MPC policy will always perform better out-of-sample. Despite this,

for non-negligible initial inventory levels, we present examples below which show that MPC can

still outperform SAA out-of-sample under expectation when c(0) = 0. These examples all involve

densities having a tail at high prices.

6. Exponentially distributed price example

In this section we compare the expected out-of-sample rewards of the sample-based policies on SIC

when x0 = 1, C(x) = 1
2
x2 (so c(x) = x), and p̃ is exponentially distributed with rate 1. This has

cumulative distribution function

F (p) =

{
1− e−p if p≥ 0

0 otherwise

and probability density function

f(p) =

{
e−p if p≥ 0

0 otherwise.

Note that Assumption 3 applies here since E[p̃] = 1.



Keehan, Philpott, and Anderson: Sample Average Approximation and Model Predictive Control
12 Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65

For N ≥ 2, let p̃1, p̃2, . . . , p̃N be independent and identically distributed random samples drawn

from the exponential distribution with rate 1. First consider the SAA solution to SIC using

p̃1, p̃2, . . . , p̃N . The calculation below shows that the resulting SAA policy performs poorly. In fact

the expected out-of-sample cost is unbounded as β→ 1. We will then compare this with the result

if the MPC policy is used instead.

For any p1, p2, . . . , pN , the out-of-sample reward of the SAA policy is V̄S(1). We will evaluate

E[V̄S(1)], the expectation here being with respect to the sampling distribution of p̃1, p̃2, . . . , p̃N , and

show that this is unbounded below as β → 1. By Proposition 5, d
dx
V̄S(x) exists. Since V̄S(0) = 0, it

follows that V̄S(1) =
∫ 1

0
d
dx
V̄S(x)dx. Using the expression for d

dx
V̄S(x) from Proposition 2, E[V̄S(1)] is

equal to

E

[∫ 1

0

∫∞
pS(x)

pf(p)dp−xF (pS(x))

1−βF (pS(x))
dx

]
. (9)

First consider the negative term in (9);

E
[∫ 1

0

−xF (pS(x))

1−βF (pS(x))
dx

]
. (10)

The term inside the expectation in (10) is measurable. Using the sampling densities and applying

Tonelli’s Theorem, (10) is then equal to∫ ∞

0

∫ ∞

0

. . .

∫ ∞

0

∫ 1

0

−xF (pS(x))

1−βF (pS(x))
dxf(pN)dpN . . . f(p2)dp2f(p1)dp1. (11)

Let us fix p1, p2, . . . , pN−1, and consider the inner-most integral in (11) when pN is large. The

value pS(x) is the p which solves (8) when c(yS(p)) = x. Given δ ∈ (0,1), if pN is sufficiently large,

then for all β ∈ [δ,1) and x∈ [0,1] equation (8) becomes β 1
N
(pN − p)+ +βp− p= x and has solution

pS(x) =
pNβ−Nx

N+β−Nβ
≥ 0. It can then be seen that

−xF (pS(x))

1−βF (pS(x))
→

−x
(
1− e−(pN−Nx)

)
1− (1− e−(pN−Nx))

uniformly in x∈ [0,1] as β→ 1, whereby

lim
β→1

∫ 1

0

−xF (pS(x))

1−βF (pS(x))
dx=

∫ 1

0

−x
(
1− e−(pN−Nx)

)
1− (1− e−(pN−Nx))

dx

=
1

2
+

(
1

N
+

1

N 2

)
epN−N − 1

N 2
epN .

So for each pN sufficiently large, given ϵ > 0, there exists a β < 1 beyond which∫ 1

0

−xF (pS(x))

1−βF (pS(x))
dx<

1

2
+

(
1

N
+

1

N 2

)
epN−N − 1

N 2
epN + ϵ. (12)



Keehan, Philpott, and Anderson: Sample Average Approximation and Model Predictive Control
Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65 13

But f(pN) = e−pN and

lim
pN→∞

(
1

2
+

(
1

N
+

1

N 2

)
epN−N − 1

N 2
epN + ϵ

)
e−pN

=

(
1

N
+

1

N 2

)
e−N − 1

N 2
< 0

which means that for any b > a> 0 the integral∫ b

a

(
1

2
+

(
1

N
+

1

N 2

)
epN−N − 1

N 2
epN + ϵ

)
e−pNdpN

can be made arbitrarily negative by increasing b. Using the upper bound (12), it follows that the

integral ∫ ∞

0

∫ 1

0

−xF (pS(x))

1−βF (pS(x))
dxf(pN)dpN

in (11) can be made arbitrarily negative by increasing β towards 1, regardless of the values of

p1, p2, . . . , pN−1. Hence, (10) is unbounded below.

Let us now address the positive term in (9);

E

[∫ 1

0

∫∞
pS(x)

pf(p)dp

1−βF (pS(x))
dx

]
. (13)

Again, for each β the integral in (13) is measurable. For any p1, p2, . . . , pN recall pS(x)≤maxi{pi}.

Thus, for all β ∫∞
pS(x)

pf(p)dp

1−βF (pS(x))
≤

∫∞
pS(x)

pf(p)dp

1−F (pS(x))
= 1+ pS(x)≤ 1+maxi{pi}.

The value maxi{pi} is just theN th order statistic of theN samples from the exponential distribution

with rate 1, which has expectation
∑N

i=1
1
i
. So (13) is bounded above by the value 1+

∑N

i=1
1
i
.

We have shown that (10) is unbounded below and (13) is bounded above. Thus, their sum is

defined and the limit (9) is unbounded below, which shows that the expected out-of-sample loss

incurred by following the SAA policy is unbounded as β→ 1, regardless of the choice of N .

In contrast to the SAA policy, the expected out-of-sample cost incurred by following the MPC

policy is bounded as β→ 1. For simplicity we demonstrate this in the case N = 2, although it can

be shown to hold in general. Following similar reasoning as in the SAA case, limβ→1E[V̄M(1)] is

equal to

lim
β→1

E

[∫ 1

0

∫∞
pM(x)

pf(p)dp−xF (pM(x))

1−βF (pM(x))
dx

]
(14)

which has negative term

lim
β→1

∫ ∞

0

∫ ∞

0

∫ 1

0

−xF (pM(x))

1−βF (pM(x))
dxf(p2)dp2f(p1)dp1. (15)
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Let p = 1
2
(p1 + p2). The iterated integral in (15) can be divided into ranges based on the value

of p. Observe that, depending on the value of p, either pM(x) = βp − x or pM(x) =
−x
1−β

. Since

p−x≥ βp−x≥ −x
1−β

, for any value of p and β, in (15) the term∫ 1

0

−xF (pM(x))

1−βF (pM(x))
dx≥

∫ 1

0

−xF (p−x)

1−F (p−x)
dx.

But ∫ 1

0

−xF (p−x)

1−F (p−x)
dx=

∫ min{p,1}

0

−x
(
1− e−(p−x)

)
1− (1− e−(p−x))

dx

=
1

2
(min{p,1})2 +(1+min{p,1})ep−min{p,1} − ep

≥−ep

and consequently the negative value (15) is bounded below by∫ ∞

0

∫ ∞

0

−e
1
2 (p1+p2)e−p2dp2e

−p1dp1 =−4.

Moreover, similar reasoning to the SAA case shows that the positive term in (14) is bounded above.

Thus, the expected out-of-sample loss incurred under the MPC policy is bounded as β→ 1.

The previous calculations show that, for any N ≥ 2, the expected out-of-sample performance

of the SAA policy can be made arbitrarily worse than that of the MPC policy by choosing β

sufficiently close to 1. For any given β the expected out-of-sample performance of the SAA policy

may be improved by increasing N , but our example shows that SAA problems with low discount

rates can require very large values of N to give good solutions.

It is tempting to conclude for this example that the SAA policy is not convergent almost surely

to the optimal policy, but it is easy to see from the explicit form of the policies that this is not

true. The SAA policy and its in-sample value converge to their true optimal counterparts. However

the derivation above shows that the out-of-sample performance of the SAA policy for this example

might be very bad on average even if N is large. In real applications, even if a sufficient number

of samples are available, the SAA policy must be computed numerically, and algorithms for doing

this cannot handle very large values of N . The MPC policy does not have this problem.

7. Numerical studies

In this section we use numerical simulation to study the expected out-of-sample performance of the

two sample-based policies (SAA and MPC) on different price distributions. In Section 6 we showed

that MPC performs far better than SAA when the underlying price distribution is exponential.

But this is an exception—we do not always find the extreme behaviour where the two expected
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out-of-sample values differ by an amount that is unbounded as β → 1. However, this does suggest

that the amount of skew and the size of the tail in the underlying distribution is important, and

we will investigate this in the current section.

To compute the expected out-of-sample performance of the sample-based policies under the

sampling distribution of {p̃1, p̃2, . . . , p̃N}, we use a simulation coded in the Julia programming

language (Bezanson et al. 2017). Although the true problem has an infinite number of stages,

simulation with a finite number of stages (say T ) will give a realistic estimate as long as it is

sufficiently large. We set T = 1000 and efficiently simulate the repeated sales process by terminating

any instances as soon as the inventory level reaches 0. Setting β = 0.95,3 x0 = 1 and C(x) = 1
2
x2,

for each policy we:

1. SampleN random prices from P to construct p̃1, p̃2, . . . , p̃N , which then determines the sample-

based policy y (either by SAA or MPC).

2. Sample a random price p̃t from P , accrue the stage reward

βt(p̃t(xt − y(xt, p̃t))−C(y(xt, p̃t))), and set xt+1 = y(xt, p̃t).

3. Repeat Step 2 from stage t = 0 to T − 1 and sell any remaining inventory at stage T to

generate
∑T

t=0 β
t(p̃t(xt − y(xt, p̃t))−C(y(xt, p̃t))).

We repeat Steps 1 through 3 to generate realizations for use as an estimate of the expected value

of the SIC problem when a sample-based policy is used out-of-sample. In our experiments we used

50000 realizations to generate the estimate of the expected out-of-sample value and found that

this was sufficient to achieve accurate values. In Figures 1-4 and 5 the standard error ranges are

smaller than the markers and so are not shown. Also note that for N = 1 the two sample-based

policies coincide.

7.1. Skewed price distributions

Suppose p̃∼Triangular(a,m, b), with lower limit a, mode m, and upper limit b. This distribution

serves to illustrate the effect of skew on the performance of SAA and MPC on SIC. In what

follows we select a, m, and b such that E[p̃] = 1 and Var[p̃] = 1
8
; the intention being to confine

differences between SAA and MPC to the sampling effects of skew only and compare them on

different distributions as fairly as possible.

3 The resulting truncation error is on the order of 0.951000 ≈ 10−23.
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Figure 1 Expected out-of-sample value of SAA and MPC for p∼Triangular (0, 3/2, 3/2), a left-skewed

distribution.

Figure 2 Expected out-of-sample value of SAA and MPC for p̃∼Triangular
(
1− 1/2

√
3,1,1+ 1/2

√
3
)
, a

symmetric distribution.

Figure 1 shows SAA outperforming MPC for all N on a price distribution that is triangular and

left-skewed. This is in contrast to Figure 2, which shows MPC outperforming SAA for N ≤ 5 on

a price distribution that is triangular and symmetric. Replacing the left-skewed price distribution

that yields Figure 1 with a symmetric distribution increases the value of the support’s upper limit.

Samples with high prices then cause the SAA policy to under-sell and pay too much in storage

costs. The MPC policy attenuates this effect since yM(x)≤ yS(x).



Keehan, Philpott, and Anderson: Sample Average Approximation and Model Predictive Control
Article submitted to INFORMS Journal on Optimization; manuscript no. MS-0001-1922.65 17

Figure 3 Expected out-of-sample value of SAA and MPC for p̃∼Triangular (1/2, 1/2,2), a right-skewed

distribution.

Further increasing the mode to 2 increases the range where MPC outperforms SAA, as can be

seen in Figure 3, which shows MPC outperforming SAA for N ≤ 6 on a price distribution that is

triangular and right-skewed.

7.2. Tailed price distributions

We have already seen that the perfomance of SAA on exponentially distributed prices can be

arbitraryly bad. Following Section 6, suppose that p̃∼Exponential (λ) with rate λ= 1.

Figure 4 Expected out-of-sample value of SAA and MPC for p̃∼ Exponential (1). Note E[p̃] = 1.

Figure 5 shows MPC outperforming SAA for all N less than about 10, a larger range than

that in Figure 3. The right-tail of the Exponential(1) distribution increases the propensity for a
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single very large price sample to be included in p̃1, p̃2, . . . , p̃N which degrades the approximate price

distribution informing the SAA policy.

Now suppose p̃∼ LogNormal (µ,σ2), with mean µ and variance σ2. LogNormal distributions are

often used to model prices in financial applications and have a right-tail which decays slower than

that of exponential distributions.

Figure 5 Expected out-of-sample value of SAA and MPC for p̃∼ LogNormal (−1/2,1). Note E[p̃] = 1.

Figure 5 shows MPC outperforming SAA for all N less than about 50, a larger range than that

in Figures 3 and 4. Increasing the signifigance of the tail beyond the exponential(1) distribution

again results in an increase in the propensity for a single very large price sample to be included in

p̃1, p̃2, . . . , p̃N .

Figure 6 explicitly demonstrates that price samples with large values degrade the performance

of SAA in the case where N = 2; typical samples result in the SAA policy outperforming the MPC

policy, but for more extreme events where one sample is very large the reverse occurs and the MPC

policy outperforms the SAA policy.
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Figure 6 Expected out-of-sample value of SAA minus that of MPC as a function of two price samples p1 and

p2 over [0,3]× [0,3] for p̃∼ LogNormal (−1/2,1). Orange contours indicate regions where the MPC policy

outperforms the SAA policy and blue contours indicate the opposite. The contour that the right diagonal lies in is

at elevation 0 since the SAA and MPC policies are identical when p1 = p2.

8. Discussion

We studied the performance of SAA and MPC on a multistage stochastic inventory control problem,

finding that MPC can outperform SAA when the underlying price distribution is right-skewed and

N is not too large. In the case where the underlying price distribution is exponential and β → 1,

MPC can outperform SAA regardless of the size of N .

The performance issues which occur when applying sample-based stochastic dynamic program-

ming to this stochastic inventory problem may be alleviated by appending newly observed prices

to the sample history and updating the policy before applying it again. However, this is not prac-

tical in general as the time complexities of algorithms used to solve for the optimal (in-sample)

stochastic dynamic programming policy grow quickly in N . Regardless of this limitation, a first

policy must still be constructed, and, in the context of SIC, if this policy is based on a sample of

prices which includes a very large price, the same performance issues will occur (albeit to a lesser

extent as the influence of the large price diminishes as N grows). For these reasons we have only

studied the setting where N is fixed.

The inventory problem we have considered is quite restricted, for example having deterministic

dynamics and additional constraints that allow inventory only to decrease. This gives a transient

problem of selling inventory down rather than looking at a problem with a steady state component.

We have chosen this problem because it enables an analytical solution and a more detailed analysis,

but we expect that similar results would be obtained for problems in which there are occasional

additional amounts of inventory arriving. For example, if inventory to replenish stocks to level x0
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arrives in each time interval with probability κ then a renewal theory argument shows that the

problem of maximizing average reward per unit time is equivalent to SIC with β = 1−κ.

We have provided an explanation of the better out-of-sample performance of optimizing using

sample average prices by viewing it through the lens of distributional robustness. This is not

entirely the whole story, since the extent of the improvement depends also on the skew of the

underlying ground-truth distribution. Our use of a single average price is also a simplification of

model predictive control in practice, which updates the sample averages in a rolling horizon fashion.

Nevertheless our results show that model predictive control has some merit beyond computational

convenience.

Appendix A: Proof of Theorem 1

Theorem 1. Under Assumption 1, if the function C(x, y, ·) is convex for all x, y ∈ X , the expectation

µ= EP [ξ̃] is well-defined and finite, and P is chosen so that δµ ∈ P and EQ[ξ̃] = µ for all Q ∈ P, then the

DRO recursion (3) has the same solution as the MPC recursion (2).

Proof of Theorem 1. For any possible VR satisfying (3) and Q∈P it follows that

EQ

[
VR(x, ξ)

]
=EQ

[
sup

y∈Y(x)

{
C(x, y, ξ)+ inf

Q′∈P
βEQ′

[
VR(y, ξ̃)

]}]

≥ sup
y∈Y(x)

{
EQ

[
C(x, y, ξ)+ inf

Q′∈P
βEQ′

[
VR(y, ξ̃)

]]}
≥ sup

y∈Y(x)

{
C(x, y,EP [ξ]) + inf

Q′∈P
βEQ′

[
VR(y, ξ̃)

]}
= VR(x,µ)

where the second inequality follows due to convexity of C(x, y, ·). But the probability distribution δµ ∈ P,

so from this inequality we can deduce that infQ∈P βEQ[VR(x, ξ̃)] is attained by δµ and has value βVR(x,µ).

Hence infQ∈P βEQ[VR(y, ξ̃)] = βVR(y,µ). It follows that the DRO recursion (3) is

VR(x, ξ) = sup
y∈Y(x)

{C(x, y, ξ)+βVR(y,µ)}

which is equivalent to the MPC recursion (2). Lastly, under Assumption 1 and with EP [ξ̃] finite, we know

that a solution to (2) exists, concluding the proof. □

Appendix B: Proof of Lemma 1

It will be helpful to prove a proposition first.

Proposition 4. Under Assumptions 1 and 2, if π, τ :X ×Ξ 7→ X are feasible policies and x∈X , then

lim
t→∞

∣∣V̄ t
(π,τ)(x)− V̄π(x)

∣∣= 0.
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Proof of Proposition 4. The terms V̄ t
(π,τ)(x

0) and V̄π(x
0) are both out-of-sample values when implement-

ing the policy π for the first t periods starting at state x0. So∣∣V̄ t
(π,τ)(x

0)− V̄π(x
0)
∣∣= ∣∣βtE

[
V̄τ (x

t)− V̄π(x
t)
]∣∣ (16)

where the expectation is with respect to the state xt after t applications of the policy π on the previous

states and realizations of ξ̃. Since V̄π(·) and V̄τ (·) are bounded and βt → 0 as t→∞, the right-hand side of

(16) goes to 0 as t→∞. Replacing x0 with x concludes the proof. □

Lemma 1. Under Assumptions 1 and 2, if π, τ :X ×Ξ 7→ X are feasible policies and V̄τ (x)≥ V̄ 1
(π,τ)(x) for

all x∈X , then V̄τ (x)≥ V̄π(x) for all x∈X .

Proof of Lemma 1. We make the inductive hypothesis: V̄ t−1
(π,τ)(x)≥ V̄ t

(π,τ)(x) for all x∈X . Now, π(x, ξ)∈

X for all (x, ξ) ∈ X ×Ξ since π is feasible. By the hypothesis, V̄ t−1
(π,τ)(π(x, ξ))≥ V̄ t

(π,τ)(π(x, ξ)) and it follows

that

V̄ t
(π,τ)(x) =E

[
C(x,π(x, ξ̃), ξ̃)+βV̄ t−1

(π,τ)(π(x, ξ̃))
]

≥E
[
C(x,π(x, ξ̃), ξ̃)+βV̄ t

(π,τ)(π(x, ξ̃))
]
= V̄ t+1

(π,τ)(x) (17)

for all x ∈ X . Equation (17) is the inductive step, and the condition in the statement of the Lemma is the

base case of the induction. Hence, V̄τ (x) ≥ V̄ t
(π,τ)(x) for all t and V̄τ (x) ≥ limt→∞ V̄ t

(π,τ)(x) = V̄π(x), where

Proposition 4 yields the final equality. □

Appendix C: Proof of Proposition 1

Proposition 1. If P has compact support, for inventory x≥ 0 and price p, SIC has optimal solution

y(x,p) = c−1
(
(βE[(p̃− p)+] +βp− p)[c(0),c(x)]

)
.

Proof of Proposition 1. Given the value function V , for y≥ 0 let V̄ (y) =E [V (y, p̃)] and

φ(y) = p(x− y)−C(y)+βV̄ (y).

The function φ(·) is strictly concave and continuous, so the optimal choice of y on the right hand side of the

recursion (5), which is given by max0≤y≤xφ(y), is attained by a unique y∗(x,p)∈ [0, x]. Since the derivative

function −c is strictly decreasing and unbounded below, the strictly concave function φ is decreasing for y

large enough and there is a unique solution y(p) to maxy≥0φ(y) which is equal to y∗(x,p) when projected

onto [0, x]. Observe that the function y(·) is decreasing. For x ≥ 0, let p∗(x) be any value such that for

p ≤ p∗(x) the term y(p) ≥ x and for p ≥ p∗(x) the term y(p) ≤ x. If x is an upper or lower bound of the

function y, such a p∗(x)∈R does not exist. In this case we set p∗(x) =−∞ or ∞ respectively.

In order to find the solution for the optimizer y(p) we need to use the derivative of ϕ(y). Our approach

is to take derivatives in the recursion and use this to solve for the derivative of V . In fact we will need to

work with the superdifferential since V may not be smooth. Denote by ∂xV (x,p) the superdifferential of the

function V (·, p) at x and p. When p≥ p∗(x), the term y(p)≤ x, so y∗(x,p) = y(p) and

V (x,p) = p(x− y(p))−C(y(p))+βV̄ (y(p)).
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In this case it follows that p∈ ∂xV (x,p). On the other hand, when p≤ p∗(x) the term y(p)≥ x, so y∗(x,p) = x

and

V (x,p) =−C(x)+βV̄ (x). (18)

If x> 0, (18) implies that

−c(x)+β∂xV̄ (x)⊆ ∂xV (x,p).

Now, ∂xV̄ (x) is non-empty. Any ḡ ∈ ∂xV̄ (x) then defines a supergradient −c(x)+βḡ in ∂xV (x,p). Let

g(ḡ, p) =

{
p if p≥ p∗(x)

−c(x)+βḡ if p < p∗(x).

By Theorem 7.46 of (Shapiro et al. 2021), V̄ (x) =E[V (x, p̃)] has directional derivatives at every x≥ 0, so

E[g(ḡ, p̃)]∈ ∂xV̄ (x).

It is easy to see that the mapping F : ∂xV̄ (x) 7→ ∂xV̄ (x) defined by

F (ḡ) = P[p̃ < p∗(x)](βḡ− c(x))+P[p̃≥ p∗(x)]E[p̃|p̃≥ p∗(x)]

is a contraction mapping with Lipschitz constant strictly less than 1, since for any ḡ, ḡ′ ∈ ∂xV̄ (x)

|F (ḡ)−F (ḡ′)|= βP[p̃ < p∗(x)] |ḡ− ḡ′|< |ḡ− ḡ′| .

As ∂xV̄ (x) is a non-empty and closed set, by the Banach Fixed Point Theorem, there is a unique ḡ(x)∈ ∂xV̄ (x)

satisfying F (ḡ(x)) = ḡ(x). But this implies

ḡ(x) = P[p̃ < p∗(x)](βḡ(x)− c(x))+P[p̃≥ p∗(x)]E[p̃|p̃≥ p∗(x)]

so

ḡ(x) =
P[p̃≥ p∗(x)]E[p̃|p̃≥ p∗(x)]−P[p̃ < p∗(x)]c(x)

1−βP[p̃ < p∗(x)]
∈ ∂xV̄ (x). (19)

An optimal solution y(p) to maxy≥0φ(y) can be constructed as follows. Let P have support [a, b]. First

observe that βE[(p̃− p)+] +βp− p is a strictly decreasing continuous function of p. If

βE[(p̃− p)+] +βp− p > c(0)

for all p∈ [a, b] then set z = b. Otherwise let z be the unique solution to βE[(p̃− p)+] +βp− p= c(0). Define

y∗(p) =

{
c−1(βE[(p̃− p)+] +βp− p) if p < z

0 if p∈ [z, b].

If p < z then y(p)> 0 and

y(p) = c−1(βE[(p̃− p)+] +βp− p)

= c−1 (βP[p̃≥ p]E[p̃|p̃≥ p] +βP[p̃ < p]p− p)

which can be rearranged to give

c(y(p))−βP[p̃ < p]p+ p= βP[p̃≥ p]E[p̃|p̃≥ p].
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Thus

(1−βP[p̃ < p])(p+ c(y(p))) =−βP[p̃ < p]c(y(p))+βP[p̃≥ p]E[p̃|p̃≥ p],

and hence

p+ c(y(p))−β
P[p̃≥ p]E[p̃|p̃≥ p]−P[p̃ < p]c(y(p))

1−βP[p̃ < p]
= 0. (20)

Observe that p satisfies the definition of p∗(y(p)) since the function y(·) is decreasing: p′ ≤ p implies that

y(p′)≥ y(p) and p′ ≥ p implies that y(p′)≤ y(p). Set p∗(y(p)) = p and from (20), if ḡ(y(p)) is defined by (19),

then

−p− c(y(p))+βḡ(y(p)) = 0∈ ∂yφ(y(p)),

showing that y(p) solves maxy≥0φ(y).

If p= z then a similar analysis shows that ḡ(0) satisfies

−z− c(0)+βḡ(0) = 0

so for p≥ z the right-hand derivative of p(x− y)−C(y)+βV̄ (y) at y= 0 is less than or equal to 0, implying

that y(p) = 0 solves maxy≥0φ(y).

Combining both cases by projecting onto [c(0), c(x)] yields

y∗(x,p) = c−1
(
(βE[(p̃− p)+] +βp− p)[c(0),c(x)]

)
.

□

Appendix D: Proofs of Propositions 2 and 3

It will be helpful to use the result (Shapiro et al. 2021, Theorem 7.44): suppose F :RM ×Ω→R is a random

function with expected value f(x) =E[F (x, ω̃)].

Lemma 2. If the following conditions hold:

(i) the expectation f(x0) is well defined and finite valued at some point x0 ∈RM ,

(ii) there exists a positive valued random variable L(ω̃) with E[L(ω̃)]<∞, and for all x1, x2 in a neigh-

bourhood of x0 and almost every ω ∈Ω, it holds that |F (x1, ω)−F (x2, ω)| ≤L(ω)∥x1 −x2∥,

(iii) for almost every ω ∈Ω the function F (x,ω) is differentiable with respect to x at x0,

then f(x) is differentiable at x0 and

∇f(x0) =E[∇xF (x0, ω̃)].

Now the derivative values can be established.

Proposition 5. Under Assumption 3, for x≥ 0 the derivatives d
dx
V̄S(x) and

d
dx
V̄M(x) exist.

Proof of Proposition 5. We will first show that d
dx
V̄S(x) exists. Note that V̄S(x) is well-defined and finite

valued, satisfying condition (i) of Lemma 2. For a sequence of prices {p1, p2, . . .}= ω, let

VS(x
0, ω) =

∞∑
t=0

βt(pt(xt − yt)−C(yt)) (21)
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where yt = yS(x
t, pt) and xt+1 = yt for all t. Note that E[VS(x

0, ω̃)] = V̄S(x
0). For each pt, the policy yS

has a target inventory yS(p
t). In (21), the inventory values xt remain at their initial value x0, until the

first t (say z) with pt ≥ pS(x
0) and yS(p

t) ≤ x0. Beyond z, all xt are independent of x0. Due to P being

atomless, almost surely there are no pt with yS(p
t) = x0 since P[p̃= pS(x

0)] = 0. So there is a neighbourhood

of x0 such that yS(p
z) < x0, where xt = x0 for t ≤ z and yz = yS(p

z), with all other states not depending

on the value of x0. In this neighbourhood d
dx0VS(x0, ω) = βzpz −

∑z−1
t=0 β

tc(x0), meeting condition (iii) of

Lemma 2. Since E[
∑z̃−1

t=0 β
tc(x0)]≤ 1

1−β
c(x0) is bounded on any compact set and E[βz̃pz̃]≤E[p̃|p̃≥ pS(x)]≤

E[p̃|p̃ ≥maxi{pi}] <∞, it follows that VS(x
0, ω) has a Lipschitz constant with finite expectation, meeting

condition (ii) of Lemma 2. Thus, V̄S(x) is differentiable. Similar reasoning shows that V̄M(x) is differentiable.

□

Proposition 2. Under Assumption 3, for any x≥ 0 the derivatives d
dx
V̄S(x) and

d
dx
V̄M(x) are given by

d

dx
V̄S(x) =

E[p̃|p̃≥ pS(x)]P[p̃≥ pS(x)]− c(x)P[p̃ < pS(x)]

1−βP[p̃ < pS(x)]

and
d

dx
V̄M(x) =

E[p|p≥ pM(x)]P[p≥ pM(x)]− c(x)P[p < pM(x)]

1−βP[p < pM(x)]
.

Proof of Proposition 2. The proof proceeds by first showing that the derivatives satisfy a recursion. Let

VS(x,p) =

{
−C(x)+βV̄S(x) if p < pS(x)

p(x− yS(p))−C(yS(p))+βV̄S(yS(p)) if p≥ pS(x).
(22)

Note that E[VS(x, p̃)] = V̄S(x). For any p < pS(x) the first case of (22) holds in a neighbourhood of x since pS(x)

is continuous. It follows that d
dx
VS(x,p) =−c(x) + β d

dx
V̄S(x), making use of the fact that d

dx
V̄S(x) exists by

Proposition 5. Similarly, for p > pS(x), following the second case of (22), d
dx
VS(x,p) = p. A similar application

of Lemma 2 as in the proof of Proposition 5 shows that d
dx
V̄S(x) =E

[
d
dx
VS(x, p̃)

]
. Taking expectations yields

d

dx
V̄S(x) =

(
β

d

dx
V̄S(x)− c(x)

)
P[p̃ < pS(x)] +E[p̃|p̃≥ pS(x)]P[p̃≥ pS(x)],

and rearranging gives the required expression:

d

dx
V̄S(x) =

E[p̃|p̃≥ pS(x)]P[p̃≥ pS(x)]− c(x)P[p̃ < pS(x)]

1−βP [p̃ < pS(x)]
.

The expression for d
dx
V̄M(x) can be derived via similar reasoning. □

Proposition 3. Assume P has a probability density function f . Under Assumption 3, if

c(y)≥ β

∫ ∞

pS(y)

pf(p)dp

for all y ∈ [0, x], then V̄M(x)≥ V̄S(x). That is, the MPC policy performs better than the SAA policy out-of-

sample.

Proof of Proposition 3. Let V̄ 1
(S,M)(y) denote the out-of-sample value of starting with inventory y and

following the SAA policy for one stage and the MPC policy forevermore. We will first show that

d
dy
V̄M(y)≥ d

dy
V̄ 1
(S,M)(y) for all y ∈ [0, x]. Following Proposition 2,

d

dy
V̄M(y) =

(
β

d

dy
V̄M(y)− c(y)

)∫ pM(y)

−∞
f(p)dp+

∫ ∞

pM(y)

pf(p)dp.
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Inspecting V̄ 1
(S,M)(y) shows that the similar expression

d

dy
V̄ 1
(S,M)(y) =

(
β

d

dy
V̄M(y)− c(y)

)∫ pS(y)

−∞
f(p)dp+

∫ ∞

pS(y)

pf(p)dp

holds. It can be seen that

d

dy
V̄M(y)− d

dy
V̄ 1
(S,M)(y) = ∫ pS(y)

pM(y)

pf(p)dp−
(
β

d

dy
V̄M(y)− c(y)

)∫ pS(y)

pM(y)

f(p)dp. (23)

Using Proposition 2, write

β
d

dy
V̄M(y)− c(y) = β

∫∞
pM(y)

pf(p)dp− c(y)
∫ pM(y)

−∞ f(p)dp

1−β
∫ pM(y)

−∞ f(p)dp

− c(y)

=
β
∫∞
pM(y)

pf(p)dp− c(y)

1−β
∫ pM(y)

−∞ f(p)dp

so applying the condition in the statement of the proposition yields

β
d

dy
V̄M(y)− c(y)≤

β
∫ pS(y)

pM(y)
pf(p)dp

1−β
∫ pM(y)

−∞ f(p)dp
. (24)

Recall pS(y)≥ pM(y). Then β
∫ pS(y)

pM(y)
pf(p)dp

1−β
∫ pM(y)

−∞ f(p)dp

∫ pS(y)

pM(y)

f(p)dp≤
∫ pS(y)

pM(y)

pf(p)dp

since
∫ pS(y)

pM(y)
pf(p)dp can be cancelled from both sides and the identity rearranged to give β

∫ pS(y)

−∞ f(p)dp≤ 1.

Thus (24) yields (
β

d

dy
V̄M(y)− c(y)

)∫ pS(y)

pM(y)

f(p)dp≤
∫ pS(y)

pM(y)

pf(p)dp,

which shows that (23) is non-negative, whereby d
dy
V̄M(y) ≥ d

dy
V̄ 1
(S,M)(y) for all y ∈ [0, x]. This implies that

V̄M(y)≥ V̄ 1
(S,M)(y) for all y ∈ [0, x]. Lemma 1 can then be used to conclude that V̄M(x)≥ V̄S(x), as required.

□
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