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SAMPLE AVERAGE APPROXIMATION AND MODEL PREDICTIVE
CONTROL FOR INVENTORY OPTIMIZATION*

DOMINIC S. T. KEEHANT, ANDY B. PHILPOTT', AND EDWARD J. ANDERSON?

Abstract. We study multistage stochastic optimization problems using sample average ap-
proximation (SAA) and model predictive control (MPC) as solution approaches. MPC is frequently
employed when the size of the problem renders stochastic dynamic programming intractable, but
it is unclear how this choice affects out-of-sample performance. To compare SAA and MPC out-
of-sample, we formulate and solve an inventory control problem that is driven by random prices.
Analytic and numerical examples are used to show that MPC can outperform SAA in expectation
when the underlying price distribution is right-skewed. We also show that MPC is equivalent to a
distributional robustification of the SAA problem with a first-moment based ambiguity set.

Key words. stochastic dynamic programming, sample average approximation, model predictive
control, distributionally robust optimization
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1. Introduction. Multistage stochastic optimization problems are in general
very difficult to solve. Although one can create scenario-tree approximations of such
problems based on samples of the random variables in each stage (called sample
average approzimation or SAA), the number of samples required to solve the true
problem to e-accuracy grows exponentially with the number of stages [10, 8] and the
resulting optimization problems are computationally expensive to solve [3]. Beyond
two-stage stochastic programming problems where the almost sure convergence of
SAA has been thoroughly explored (see [9]), the performance of SAA on multistage
problems has received little attention apart from the aforementioned negative results.

Multistage stochastic optimization problems become easier when the random vari-
ables are stage-wise independent or follow a Markov process and the problem can
be formulated as a stochastic optimal control problem, where decisions are controls
that affect state variables obeying some dynamics. In principle, such problems are
amenable to solution by stochastic dynamic programming methods, or some approxi-
mate form of these, as long as the dimension of the state variable is not too large. Of
course stochastic dynamic programming methods must compute expected values and
so some discretization of the random variables is required to enable this. Here SAA
provides a natural methodology and has the property that the sample expected values
for a sample size N will converge almost surely by the strong law of large numbers to
their true values as N — oo.

Stochastic optimal control problems do not have to be solved using a dynamic
programming approach. In many practical settings (e.g., where state dimension is
high and controls and states are subject to complicated constraints) model predictive
control (MPC) can be used. There has been an enormous amount of work in control
theory exploring the use of model predictive control in various contexts (see [5, 6]). In
our situation we consider a relatively simple problem in which the state variables are
fully observed, state constraints are simple, and we can find explicit solutions for the
infinite horizon problems that we need. In this case the MPC approach fixes random

*Submitted to the editors DATE.

Funding: This work was funded by FUNDED.
TElectric Power Optimization Centre, University of Auckland (dkee331@aucklanduni.ac.nz,
a.philpott@auckland.ac.nz).
HImperial College Business School, Imperial College London (e.anderson@imperial.ac.uk).

1

This manuscript is for review purposes only.


mailto:dkee331@aucklanduni.ac.nz
mailto:a.philpott@auckland.ac.nz
mailto:e.anderson@imperial.ac.uk

v gt Ot Ot Ut

T W N =

[SL TN, SG) Be)|
) 00 N D

ot

60

2 D. S. T. KEEHAN, A. B. PHILPOTT, AND E. J. ANDERSON

variables at their expectation and solves a deterministic optimal control problem.
(One can either assume that the expectations are known exactly, or estimate them
from a random sample. We focus on the second case in this work.) The optimal policy
that solves this deterministic problem is applied in the first stage only and a new
deterministic problem is formed from stage 2 onwards in a rolling horizon manner.
There have been comparisons of SAA and MPC by simulation out-of-sample, and
MPC does well in certain circumstances (see e.g. [4]). However, the reasons for
this good performance have not been fully explored. Although the SAA and MPC
solutions coincide when the certainty equivalence property holds [12, 13], this does
not explain the success of MPC in more general conditions.

Our aim in this paper is to advance our understanding of SAA and MPC applied
to stochastic control problems. To do this we restrict attention to a specific class
of inventory problems with a one-dimensional state variable. This simple stochastic
inventory control problem (SIC) seeks to maximize the expected reward from selling
a fixed inventory of some item at a random and varying price over an infinite horizon.
The price at each stage is assumed to be independent of other prices and identically
distributed. At each stage the inventory held incurs an inventory cost that we assume
is an increasing strictly convex function. This problem is simple enough to admit
a closed-form optimal policy for any bounded price distribution, but complicated
enough to provide a suitable laboratory to test the performance of SAA and MPC.

Given the SIC model and some ground-truth price distribution, for any price
samples we can compute an SAA policy and compute its expected reward under
the true price distribution. Similarly, we can compute an MPC policy based on the
sample average of the random prices, and compute its expected reward under the
true price distribution. The expectation of these two statistics over the sampling
distribution gives a measure of out-of-sample performance of each approach. Our
study is motivated by the question:

Under what conditions does Model Predictive Control do better out
of sample than the optimal dynamic programming solution based on
Sample Average Approximation?

We observe that the performance of SAA is poor when price distributions have a
long right tail. In this setting the price samples will occasionally contain a very high
price, causing the SAA policy to anticipate high prices too frequently and pay too
much in storage costs in the meantime. MPC policies attenuate this effect when it
occurs and can perform better than SAA out-of-sample.

The paper is laid out as follows. We begin in section 2 by formulating our inven-
tory problem and deriving a formula for its optimal solution as a function of the price
probability distribution. This formula can be used to determine an SAA policy based
on the empirical distribution of price samples, as well as an MPC policy based on
the sample-average price. In section 3 we compare the out-of-sample performance of
these two policies under some simple assumptions on the ground-truth price distribu-
tion, and provide conditions on the price samples which ensure that the MPC policy
performs at least as well as the SAA policy. In section 4 we assume an exponential
distribution for price and show that the expected out-of-sample improvement from us-
ing MPC instead of SAA becomes arbitrarily large as the discount factor approaches
1. In section 5 we report some numerical experiments that support the theoretical
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APPROACHES TO MULTISTAGE INVENTORY OPTIMIZATION 3

results of previous sections. We close the paper in section 6 by giving an interpre-
tation of MPC as a distributional robustification of SAA that uses a moment-based
ambiguity set, providing a different lens for viewing the performance differences of
SAA and MPC.

2. A stochastic inventory control problem. To study the performance of
SAA and MPC, we will look at a particular stochastic inventory control problem that
can be formulated as

SIC: . max , E Zﬂt_l (Pruy — C(xy))
Uy ,U,.. P

where z; and u; satisfy

Tt = Tt—1 — Ug, t:1,2,
utE[O,xt_l], t=1,2,...,

and u; depends only on the price history {P, Ps,..., P} up to time ¢ (i.e. the
standard non-anticipativity constraints). The value of oy > 0, the initial inventory
level, is given. Here 8 € (0,1) is a discount factor, P; is a random price with finite
expectation and C is an increasing strictly convex and differentiable function with
derivative c. Because c is a strictly increasing continuous function, we may define an
inverse function, ¢!, on the range of ¢. The problem SIC can be interpreted as the
problem facing a merchant who maximizes expected discounted reward by selling at
each time t an amount of stock u; at a realisation of the random price P; from their
current inventory x;_1, while incurring a storage cost C(x;—1 — u) on their remaining
inventory.

In what follows, we analyse the optimal solution of SIC and approximations of
SIC that come from either an empirical distribution using a set of samples drawn from
{P;} or assuming the price is fixed. To keep this analysis simple we make following
assumptions:

ASSUMPTION 2.1. The random prices Py are independent and identically distrib-
uted on a bounded interval [pr,, pu], having probability distribution P.

ASSUMPTION 2.2. The inventory cost is a continuously differentiable function C :
Ry — Ry with C(0) =0 and lim,_,o ¢(z) = 0.

Under Assumption 2.1, we drop dependence of the random price P; on the index
t and for z > 0 define the dynamic programming functional equation

(2.1) V(z)=E {max {Pu—C’(x—u)—i—ﬁV(w—u)}] .

0<u<z

Observe that the mapping (u,p) — pu — C(x — u) is bounded on the compact set
[0,2] X [pL,pu] and B < 1. Tt follows that SIC has a finite optimal value, and by
Theorem 9.2 of [11, p. 246] this is equal to V(zp). In addition, the mapping =
pu — C(x — u) is continuous and strictly concave and the feasible region [0,z] is a
convex set. Strict concavity of V(z) then follows by Theorem 9.8 of [11, p. 265].
With V (z) strictly concave and bounded on bounded sets, it follows that V (z) is also
continuous and therefore must have a non-empty superdifferential which we denote
by oV (z).
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4 D. S. T. KEEHAN, A. B. PHILPOTT, AND E. J. ANDERSON

For a given price p and current inventory x the optimum expected discounted
reward from this point on is given by

(2.2) V(x,p) = ogfgx {pu —Clx—u)+ Bf/(x — u)} ,

where the optimal choice of action is given by the maximizing value w.
Denote the projection of y € R onto the closed interval [a,b] by (Y)jap =
max{a, min{b,y}}. We write (y)q,00) = max{a,y} and (y); = max{y,0}.

PROPOSITION 2.3. Under Assumptions 2.1 and 2.2, the right-hand side of (2.2)
has optimal solution

u(z,p) =z —c' ((5E[(P —p)+]+Bp — p)[c(O),e(z)]) :

Proof. Observe that the change of variables w = x — u yields

(2.3) V(a,p) = max {p(x —w) = C(w) + BV (w)}.

Let

op(w) = p(z — w) — C(w) + BV (w).

For any values of x and p the mapping w — ¢,(w) is strictly concave and has a
nonempty superdifferential d¢,(w), so for > 0 the optimization maxo<w<z @p(w)
has a unique solution w*(z,p) € [0, z] satisfying

0 € dpp(w*(z,p)) + N(w*(z,p)),

where N (w*(z, p)) is the normal cone of [0, 2] at w*(x,p). Since the derivative c(w) is
strictly increasing and unbounded above, ¢, (w) is decreasing for w large enough and
there will be a unique solution w(p) to max,,>o ¢p(w) which is equal to w*(x, p) when
projected onto [0,z]. Observe that the function w(p) is decreasing, and it follows
that for any x there exists some critical price pc(z) such that for p > pe(z) we have
w(p) < z and for p < pc(x) we have w(p) > x.

Denote by 0V, (z) the superdifferential of the mapping  — V(z,p). When p >
pc(x), we have w(p) < z, so w*(z,p) = (w(p))+ and

V(z,p) = p(z — (w(p))+) — C((w(p))+) + BV ((w(p))+)-

In this case it follows that p € OV, (z).
On the other hand, when p < pc(z) we have w(p) > z, so w*(x,p) = x and

(2.4) V(z,p) = =C(z) + BV (x).
For all z > 0, (2.4) implies that
—c(x) + BV (z) C AV, ().

So any § € OV (x) defines a supergradient —c(x) + 8§ in 9V, (z). Let

[ p > pc(x)
h(g,p) = { —c(z) + B3, p<pclz)
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APPROACHES TO MULTISTAGE INVENTORY OPTIMIZATION 5

By Theorem 7.46 of [9, p. 371], V(x) = E[V (z, P)] has directional derivatives at every
T, 80

E[h(j, P)] € OV (x).
It is easy to see that the mapping T : 9V (z) — OV () defined by
T(9) = (B9 — c(x))P[P < pc(x)] + E[P|P = pc(x)|P[P > po()]

is a contraction with Lipschitz constant strictly less than 1, since for any §,§’ € OV (x)

T(G) - TG =13 -3 BPIP < pc(x)] < 1§ —7'|-

As 8‘7($) is a nonempty closed set, by the Banach fixed point theorem, there is a
unique §(z) € OV (x) satisfying T (g(x)) = g(z). But this implies

9(x) = (B9(z) — c(2))P[P < po(z)] + E[P|P = po(z)|P[P = pc(x)]

We now construct an optimal solution w(p) to max,>o ¢p(w) as follows. First
observe that S(E[(P — p)+] + p) — p is a strictly decreasing continuous function of p.
If

BE[(P —p)+] +p) —p > c(0)

for all p € [pL,pu] then set p; = py. Otherwise let py be the unique solution to
B(E[(P —p)4+] +p) —p = c(0). We now define

_ [ Y BEP —=p)+]+p)—D), pP<pz
wlp) = { 0, : p € [pz, pu]

If p < pz then we have w(p) > 0 and

w(p) = ¢ (BE[(P —p)+] +p) — D)
=c ' (B(E[P|P > p]P[P > p] + pP[P < p]) — p).

We can rearrange this to give
(2.6) (1= BPIP < p])p+ c(w(p)) = BP[P > p]E[P | P > p].
Thus
(1= BPP < p))(p+ c(w(p))) = —Be(w(p)) P[P < p] + P[P > p|E[P | P > p],

and hence

c(w(p))P[P < p] + E[P|P > p|P[P > p]

1- BP[P < p| =0

(2.7) —p—c(w(p)) + B—
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6 D. S. T. KEEHAN, A. B. PHILPOTT, AND E. J. ANDERSON

The definition of po implies that p = po(w(p)), and so (2.7) implies that if we define
g(w(p)) by (2.5) then

—p — c(w(p)) + Bg(w(p)) = 0,

and 0 € dp,(w*(z,p)) showing that w(p) solves max,,>o ¢p(w).
If p = pyz then a similar analysis shows that §(0) satisfies

—pz — ¢(0) + Bg(0) =0

so for p > py the right-hand derivative of p(x — w) — C(w) + SE[V (w, P)] at w = 0 is
less than or equal to 0 implying that w(p) = 0 solves max,,>o p(w).
Combining both cases and projecting w(p) onto [0, z] yields

w(2,p) = ¢ ((FBIP = p)1] + 60 = D)ooyt

and

ulw,p) = 2 — ¢ ((BEIP = p)] + 60 = D)ooy ey ) -

Proposition 2.3 shows that SIC has an optimal target inventory level

w(,p) = ¢ ((BEIP = )4 ]+ 50 = D)0 o)

at which the marginal cost of storage is as close as possible to the discounted expected
increase in price above p in the next stage. The optimal SIC policy is then to reduce
the current inventory level to w*(x, p) if it is not already at w*(z, p) by selling surplus
stock.

Proposition 2.3 makes no assumptions about the probability distribution PP, except
that it has bounded support. Thus P could have a density f with bounded support
giving the optimal policy

r—c B (g —p)f(q)dg+Bp—p ,
P [c(0),c(2)]

or could consist of an empirical distribution on N price samples qi,¢qo,...,qn with
P(g;) = %, giving the SAA policy

N
_ 1
(2.8) us(z,p) ==z —c! <5N > —p)++5p—p>
i=1 [e(0),(x)]

We can also obtain an MPC policy from the samples ¢1, ¢o, ..., gy by planning us-
ing the sample average ¢ = % Zfil q;- In this case Proposition 2.3 would use the
probability distribution that assigns probability 1 to g, giving E[(P —p)4+] = (—p)+
SO

(2.9) wni(@,p) i= 2 = ™ ((B@ = D)+ + B~ Piuqoy.ear)) -

For an initial inventory level x, the sample-based policies each have a critical price
(that we denote by pg(x) and py(x) for the SAA and MPC policies, respectively)

This manuscript is for review purposes only.



226

228
229
230

242

243
244
245
246
247

APPROACHES TO MULTISTAGE INVENTORY OPTIMIZATION 7

which is the minimum price required to be offered to the vendor for any stock to be
sold. The critical price ps(z) is the unique p that solves 5% ZZ]\; (i —p)++PBp—p=
¢(x) and a similar definition holds for py(z). Depending on the samples g1, g2, . - ., gn,
each sample-based policy will either pay too much in storage costs by selling too little
stock, or not be able to take full advantage of future high prices having sold too much
stock. By Jensen’s inequality, (E[P] — p)+ < E[(P — p)], whereby pm(z) < ps(z)
and un (z, p) > ug(z,p). In this way, the policy uy requires a lower price to sell stock
than the policy ug and sells at least as much. We will explore the implications of this
observation in the next section.

3. Out-of-sample performance. The assumption that P lies within a bounded
interval [pr, pu] is restrictive. Assumption 3.1 allows us to study the out-of-sample
performance of the sample-based policies (derived using Proposition 2.3 on sample-
based distributions that are discrete and therefore bounded) even when the underlying
distribution is unbounded.

AssSUMPTION 3.1. The random prices Py are independent and identically distrib-
uted, having a probability distribution P with support on Ry, a finite mean, and no
atoms.

Suppose we observe N price samples ¢y, go, ...,qy and use these to inform the
sample-based policies as in (2.8) and (2.9). The value of the SIC problem if the
(possibly sub-optimal) SAA policy is used is

(3.1) Vs(wg) :=>_ B 'E[Pus(xi—1, P) — C(ay)]

where the values x; are random variables determined by successive prices and derived
from an the initial value zg using the actions ug. This is well-defined since the infinite
series is easily shown to be convergent: the expectations at each stage are bounded
and they are discounted by 8 < 1. To show boundedness, we note z; < xg, C is
non-negative and an increasing function, and ug(x¢—1, P) < xt—1 < x, and thus

—C(z9) < E[Pug(zi—1, P) — C(x1)] <E[P]xo.

Having defined Vg as a function of the initial inventory, we also have Vg satisfying
the associated functional equation

Vs(x) = E [Pug(z, P) — C(x — ug(z, P)) + BVs(z — us(z, P))] .

Similarly, the value of the SIC problem if the (possibly sub-optimal) MPC policy is
used is well-defined and has an associated functional equation

Vam(z) = E [Pun(z, P) — C(z — um(z, P)) + BVm(z — um(z, P))] .
It is convenient to define

B(z) = %ﬁmax{C(x),E[P] 2},

Then the bounds on the individual terms in Vg and Viy show that B(z) is an upper
bound on both |Vs(z)| and |[Vam(z)].
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3.1. Derivative of the expected value function. Before making comparisons
between Vg and V3 we will first calculate their derivatives with respect to the initial
inventory. It will be helpful to use a result of [9, p. 369], who give the following result
(Theorem 7.44). Suppose that F' : R” x  — R is a random function with expected
value f(z) = E[F(z,w)].

LEMMA 3.2. If the following conditions hold:

(A) The expectation f(xq) is well defined and finite valued at some point xg € R™;

(B) There exists a positive valued random variable L(w) such that E[L(w)] <

00, and for all x1,x2 in a neighbourhood of x¢ and almost every w € €,
|F(21,w) — Plrz,0)] < Lw)|a1 — osll;

(C) For almost every w the function F(x,w) is differentiable with respect to = at

Zo;
then f(x) is differentiable at xo and

Vf(ilio) = E[vxF(.To, w)}

Now we can establish the derivative values. Since Vi is undefined for z < 0 the
derivative d%VM(O) does not exist. However, at x = 0 the function Vis(z) does have
a right derivative, and for the rest of this paper the expression %VM(x) implicitly
refers to this right derivative when x = 0.

LEMMA 3.3. Under Assumptions 2.2 and 3.1, each of the derivatives of the ex-
pected value functions exist and are given by

44 ) — EPIP > ps@PLP > ps(a)] = c(@)PIP < ps(a)
dr ® 1 — BP[P < ps(z)]
and
d g o~ EIPIP > pu(@IPIP > p(a)] = c(@)PIP < pu(z)]
de M 1= BPIP < pum(z)] '

Proof. The proof proceeds by first showing that the derivatives exist and then
determining their values by a recursion. We begin by considering Vs(x¢). For a
particular realisation w = {p1, pa, ...} of the random variables {P;, Ps, ...} the value
function is determined by

o0

(3.2) Vs(zo,w) = Zﬁt_l(thS(xtfl»Pt) = C(zy))

t=1

The expectation of this is Vs(zg) and is well-defined, satisfying condition (A) of
Lemma 3.2. Consider a realization of (3.2) with prices {p1,p2,...}. Assume that
there is some minimal index, T such that pr > ps(zg), the critical price. Since P
has no atoms, we know that pr > ps(zg) > max{pi1,ps,...,pr—1} almost surely.
The SAA policy with this price realisation will sell no stock until period T and
the inventory levels are fixed at x; = x¢ up to this point. At time 7 the SAA
policy sells stock ug(zr—1,pr) for the price pr. The resulting inventory level is
ar = (B4 :(q —pr)+ + Bpr — pT)[c(o),oo) ) which is independent of zy. Thus
for all ¢ > T the inventory levels zy are also independent of xzg. Now, ps(z) is a
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continuous function of & which means that pr > ps(x) > max{p1,p2,...,pr—1} also
holds for z in a neighbourhood N about zy. This allows us to track the change in
Vs(z,w) for different initial inventories x in this neighbourhood. If z1 > x2 then

T-1
(3.3) Vs(z1,w) — Vs(x2,w) = pr(z1 — x2) — Z BIHCO(x1) — Clxw)).

This has an absolute value upper bounded by 6(p1, ps2, .. .)|z1 — z2| where

9(]917]927'”) :pT+ 2C({170)

1
1-p
and we choose N small enough so that for all z € N' we have the derivative c(z) <
2¢(x0). In the case that p; < ps(xo) for all ¢, so that pr is not defined, we can find a
neighbourhood of zy where (3.3) is replaced by

oo

(3.4) Vs(21,w) = Vs(@2,0) = = B (C(a1) — C(a2))

t=1

and use a similar argument to show that (py, po, . ..) is also a Lipschitz constant for
Vs(zp,w) in a neighbourhood about ¢ in this case. Now

E[0(P1, Py,...)] < E[P|P > ps(zo)] +

1
T 520(%) < 00.
So the existence of the function 0(p1,ps,...) verifies condition (B) of Lemma 3.2.
Moreover, it is easy to see that (3.3) and (3.4) imply a well-defined derivative of
Vs(wo,w) for almost all w, hence satisfying the final condition (C) of Lemma 3.2.
Thus we can use this result to show that ﬁVs(xo) exists and is finite. The proof is

entirely similar for d%gVM(:BO).
Let w(p) = c_l( (5% >ilei—p)+ + Bp— p) [2(0),00) ) We can define
_ —C(z) + BVs(z) p < ps(x)
1500 = { e ) Ol BT 55 pele)

Then Vs(z,p) is the expected value from following the SAA policy with initial in-
ventory z and initial price p. So Vs(z) = E[Vs(x,p)]. We can use the same ap-
proach as above, making use of the fact that %Vg (x) is well-defined to show that
LVs(z) =E [LVs(z,p)]. Thus

a [ —cl@)+ BLEVs(x) p <ps(x)
deS(x’p)_{ P p > ps(x)

Taking expectations we derive

d

L Vale) = (B2 Va(0) (o) ) BIP < ps(o)] + BIPIP 2 po(@)FIP = ps(e)]

and rearranging gives the required expression:

4y (2) = E[P|P > ps(x)|P[P > ps(z)] — c(z)P[P < ps(z)]
S\EI= 1— BP[P < ps(z)] '

dx
The expression for d%VM (z) can be derived via identical reasoning. |
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10 D. S. T. KEEHAN, A. B. PHILPOTT, AND E. J. ANDERSON

3.2. Comparing MPC and SAA. Our approach to compare the two different
policies is to consider starting with the MPC policy and then switching to the SAA
policy after a certain number of stages.

DEFINITION 3.4. Let
Dy(z) := E [Pug(z, P) — C(z — ug(z, P)) + BVu(z — us(z, P))],
and fort > 1,
(3.5) Dy(z) :=E [Pug(z, P) — C(z — us(z, P)) + BD—1(z — us(z, P))] .

The value D(x¢) is the value of the SIC problem if the policy us is used for ¢
stages and the policy uy is used forevermore. It is clear that Dy is bounded in the
same way that Vg and Vi are bounded, so Theorem 9.2 of [11, p. 246] again holds.

PROPOSITION 3.5. lim;_,o | Dy () — Vs(x)| = 0.

Proof. The values Dy(xg) and Vs(zo) both implement the policy ug for the first
t periods when starting with initial inventory zy. So

|Di(z0) — Vs(zo)| = |E [B" (Vm(ae) — Vs(ay))]| < 2B (o)

where the expectation is taken with respect to the value z; which is a random variable
under the application of the policy us. As ¢t — oo, the bound B2B(z0) — 0. Thus,
limy_s oo ‘Dt(mo) - Vs (mo)’ = 0. Replacing xg with x concludes the proof. 0

LEMMA 3.6. If Var(z) > D1 () for all z € [0, 0], then Var(zo) > Vs(zo).

Proof. We will first show that D;(x) > D;,(x) for all ¢ via induction. Since
r —ug(z,p) € [0,30] for all z € [0,z0], by the assumption in the statement of the
lemma Vi (z — ug(z,p)) > Di(x — us(z,p)). Thus

Dy(x) = E [Pug(z, P) — C(x — ug(z, P)) + SVa(z — us(z, P))]
(3.6) >E [Pus(x, P) — C(z — us(x, P)) + 8Dy (2 — us(z, P))] = Do(2).

We make the inductive hypothesis: D;_1(x) > Dy(x) for all = € [0,20]. Of course
x —ug(z,p) € [0, z0] still holds, and by the inductive hypothesis D;_1(x — ug(z, p)) >
Dy(x — ug(x,p)) for all x € [0,x0], so applying to (3.5) a similar line of reasoning
as in (3.6) shows that D;(z) > Dyy1(x), as required. Setting z = z then shows
that Var(z,) > Di(z,) for all ¢ > 1. Thus, Va(z,) > limy—o0 Di(z) = Vs(z,) where
Proposition 3.5 yields the final equality. ]

PRrROPOSITION 3.7. Assume P has a density f. Under Assumptions 2.2 and 3.1,

if c(x) > Bf::(z)pf(p)dp for all x € [0, ], then Var(wo) > Vs(zo).

Proof. In the context of the proposition we will first show that %VM(x) >
LDy (x) for all x € [0, x0]. As in Lemma 3.3

%VM(@ = (BchVM(I) - c(a:)) /p:(m) f(p)dp + /p:(z) pf(p)dp.

Inspecting D; (x) shows that the similar expression

4Dy () = (ﬂ;‘;vm) - c<x>) / " yp + | v

dx —0o0 ps(z)
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also holds. Recalling ps(x) > pm(z), it can be seen that

B _ ps () ps ()
@ = 20w == (35w ) [ s [7asan

M(z) pm ()

Using Lemma 3.3, we may write

pr )pf p)dp — c(x pr
—B 7 £( p)dp

_ Bloww?! (p)dp — c(z)

=80 fpdp

so applying the condition in the statement of the proposition yields

5 Vaa(e) — efa) = 6 Y e

d g A oS
(3.7) ﬂdeM(w) —c(x) g ) )
! S f@@
Now
f B pi( ps (@) ps (@)
pMm / f(p)dp < / pf(p)dp
- B f( p)dp (@) (@)

since we can cancel f;ﬁgig pf(p)dp and then rearrange to give 6ffi<(f) fp)dp < 1.
Thus (3.7) yields

d _ ps (@) ps ()
(33) (3wt @) [ sorn< [* " pran
z pm () pym ()
whereby
—V > —D
deM(x) ~ dx (@),
as required. This implies that Vyr(z) > Di(x) for all 2 € [0, ). Lemma 3.6 then
implies that V(zo) > Vs(z0), as required. d

Recall the condition of Proposition 3.7: ¢(z) > fp («) pf(p)dp for all x € [0, zq].
This requires ¢(0) > 0. The critical price ps(x ) is strictly increasing in the maximum
sampled price ¢x in S. The term fpos(z) pf(p)dp is then strictly decreasing in ¢x and
eventually vanishes. When f has infinite support we will occasionally encounter a
gy that is sufficiently large for the inequality c(z) > fp P f(p)dp to hold for all
x € [0, o], as long as f <(x) pf(p)dp is not too large In other words we can expect to
encounter samples where Vyi(7g) > Vs(z0) when f has a small amount of probability
at high prices.

As an example application of Proposition 3.7, suppose that 8 = 0.95, C(x) =
23@ + :U zo =1, and P ~ LogNormal (u = 1 ,0% = 1) with probablhty den51ty f
Let N =2 with ¢ = 5 and q2 = 3. Numerlcally evaluating c(z) — 8 fps @ P f(p

for x € [0,1], Figure 1 shows that this difference is always pos1t1ve which means that
the condition of Proposition 3.7 is satisfied.
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0.6F"
=
 05F

~

FiG. 1. The difference c(z) — Bf;:(m) pf(p)dp over z € [0,1].

It follows that the MPC policy performs at least as well as the SAA policy does for
the sampled prices ¢; = % and ¢go = 3 for the initial inventory level g = 1. The SAA
and MPC policies in question are included in Figure 2, and they differ for certain
values of the sales price p.

p

F1a. 2. Stock sold by the SAA and MPC policies from the initial inventory level o = 1 over
p € [0,3]. Note that the stock sold is constrained to be less than 1 which causes the policies to
coincide at p = 1.8 rather than p = q2 = 3.

If ¢(0) = 0, then the premise of Proposition 3.7 is not true. Despite this we present
examples below which show that Vii(z,) > Vs(z,) can still occur when ¢(0) = 0.
These examples all involve densities having a small amount of probability at high
prices.

4. Exponentially distributed prices. In this section we compare the expected
out-of-sample rewards of the sample-based policies when C(z) = 322 (so c(z) = z)
and P has an exponential density with mean 1. Here ¢(0) = 0, so Proposition 3.7
does not apply.

For N > 2, let S be a sample of size N drawn from the exponential distribution.
First we consider the SAA solution to SIC using sample S when xo = 1. The result
below shows that the SAA solution performs very poorly. In fact the expected out of
sample value approaches —oo as 8 approaches 1. We will then compare this with the
result if the MPC policy is used, instead of SAA.

PROPOSITION 4.1. When S = {q1,q2,...,qn} is a sample of size N > 2 drawn
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from the exponential distribution, then E[Vg(1)] — —oo as B — 1, where the expecta-
tion is taken with respect to the sample S.

Proof. We begin by considering fixed q1, o, ..., gny—_1. Without loss of generality,
it may be assumed that q; < g2... < gy—1. Consider first those samples where
qn > % + qN,l(% — (N —1)). This gives a policy that, on observing price p, aims for

inventory target ws(p). If p > qn_1, then from (2.8), ws(p) = [3% —(1-P)p.
Now the critical value ps(z) occurs when ws(p) = = and so ps(z) = %. We
are considering values of qx large enough so that ps(z) € (gy—1,¢n] since x € [0, 1].

From Lemma 3.3,

) = E[P|P > ps(2)]P[P > ps(2)] — c(z)P[P < ps(z)]
dr S\ T 1 — BP[P < ps(z)]
fposo(z) pePdp — fE(l - e*Ps(w))
1—B(1—ersl@))
B e Ps(@) (pg(z) +1) — 2(1 — e Ps(®)
- 1—B(1 — e ps(@))
ps(z) + @ +1 — xers®
(1 - 6)61’5(93) +8

Since Vg(1) = 0 we deduce

where

. ' ops(@)tatl
Vs(1)+:/0 i pat 5% >0

and

_ _ 1 xeps(m)
Vs(1) :/0 (l—ﬁ)eps(z)+ﬁdm>0'

We will show that

(4.1) lim Vs(1)e Ndgy = —o0.
p—1 Ftanv—1(F-(N-1))

First we show that Vs(1)* is bounded for all 8 € (0.5,1). We have ps(x) € [gn—1,qn],
so ps(z) + + 1 is bounded. If 3 > 0.5, then (1 — 3)ePs(®) + 3 is bounded away from
0, which shows that Vg(1)* is bounded for all 3 € (0.5,1). Thus the component of
the integral in (4.1) from Vg(1)* is bounded.

Now assume that there is some M such that for all 8 € (0.5,1) we have

(4.2) / Vs(].)ieinqu <M,
Yty 1(F—(N-1))
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and seek a contradiction. We write

oo
/ Vs(1)"e™ N dgn
Ftan-1(F—-(N-1))

- AN
Noigy o (F-(v-1))Jo (L= B)ers®) 43

Observe first that both the numerator and denominator of the integrand are positive,
and if 8 € (0.5,1) then

(1—B)ers®) + 8 < (1—B)e™ + .
Since
ps(a) = _anB = Nz
N+ B8—Ng
the numerator is

gqnNB—Nz
zePs(@e=IN = geNTFNB e IN
—NM
= xe N+B—NpB
= 7N1(\1,]i;31 I{;gxe N+/3 Nﬁ
Now for any 8 € (0,1), since N + 8 — N3 > 1, we have
1 - 1
/ xe NFE-NBdyr > / e Ndy
0 0
1 _
= 5z (L= (N4 De™),
SO
° 1 aN peps(z)
e INze
dxdqn
/;ﬂmdg(ND%A (1= B)ersts) +
an (1-8)
1 o e~ N~
> (1 (N+1)e ™ j[ TN
N? ( ) Nygyoa(¥—(v-1)) (1= Blei~n + 3
For all ¢ > 0 we have

0 e_NNqSBiLj\)Iﬁ
9q \ (1 —p)et +p
—e_Nqull;fl)\’B

1-5
(N + B~ NB) (B + et — Bea)”

(NB + Be? +2Nel(1 - 3))

which is negative, so the integrand is decreasing. Moreover for any q > % +qn—1 (% —
_n-a(d=8)
(N —1)), limg_,q % =1, so there is some 5 < 1 with

B
-N N-f-/a 1\3[3 1

u_mw+ﬁ>§
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It follows that for any such ¢ we can find 8 < 1 so that

B

q e~ NiEns 1 N N
s adan > 5a— (F +avaa(5 — (N —1)))).
/N+qN1(g_(N—1)) (1-PBler+p 2 B B
By choosing ¢ large enough we can make

oo

1 e
—1—N+1e—N/ e PV
N2 (1= ™) Ny (¥—v-1)) (L= B)e? + 13

contradicting (4.2).
Now for all g in the range [0, % + qN_l(% — (N —1))] it is easy to show that
V5(1) is bounded for all B € (0,1). It follows for every fixed q1,qz,...,qn_1 that

/ Vs(1)e™™dgn
0

is unbounded below as 8 — 1.

This statement is true independent of the values of ¢;,q2,...,qn_1. So if we
take an expectation with respect to the (joint exponential) sampling distribution
on qi,qo,-..,qv—1 then this will also be unbounded below as § — 1. Thus the
out-of-sample losses incurred by the sample average approximation solution ug are
unbounded as # — 1, regardless of the choice of N. ]

In contrast to the SAA result, the expected value of the out-of-sample cost for
the MPC policy is bounded as 8 — 1. For simplicity we demonstrate this in the
case N = 2, although it can be shown to hold in general. The expected value of the
out-of-sample cost for the MPC policy is

(4.3) /OOO </OOO VM(l)eq2dq2> e 1dq.

where Lemma 3.3 gives

1
- pu(z) + 2 4+ 1 — xepu(@)
w- [

1% )
M (1= Bem@ 13
The negative part of Vir(1) is
1 Py ()
_ ze
wm(l)™ = dx.
M( ) /0 (1 —B)ei"M(’”) +8 T
Let g = 3(q1 + q2). Recall that py(z) = (87 — )4, so
B ( ) min{8g,1} xeﬁﬁ—m 1
Vam(1)™ :/ = dx—l—/ rdz
0 (1—p)efi—= +p min{8g,1}
min{8g,1} __A7-« 1
< / re dx +/ xdx
0 B 0
e? 1
J— _|_ —
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i/ (/ e;(Q1+Q2)6qqu2> efthdql +1
eB Jo 0 2
4 1

33

Therefore

/ </ VM(l)eqzd(p) e~ Tdgy
0 0

IN

Thus, as long as 5 € (0,1) is bounded away from 0, we have

/ </ VM(l)e‘”dqQ> e Mdgy < 00

0 0

/ </ VM(l)e‘md(p) e Mdgy > —o0.
0 0

Moreover, identical reasoning as in the SAA case shows that (4.3) has a finite-valued
positive part. Thus, when N = 2, the expected out-of-sample loss incurred under the
MPC policy is bounded as 5 — 1.

SO

5. Numerical studies. In this section we use numerical simulation to study
the performance of the two sample-based policies (SAA and MPC) on different price
distributions. In section 4 we showed that MPC is far better then SAA with an
exponential distribution. But this is an exception—we do not usually find this extreme
behaviour with the two expected out-of-sample values differing by an amount that is
unbounded as  — 1. However this case does suggest that the amount of skew in the
underlying distribution is important, and we will explore this in this section.

To compute the expected out-of-sample performance of the sample-based policies
under the sampling distribution of ¢i,¢s,...,qn, We use a simulation coded in the
Julia programming language [2]. Although the true problem has an infinite number
of stages, simulation with a finite number of stages (say T') will give a realistic estimate
as long as it is sufficiently large. We set T' = 1000 and efficiently simulate the repeated
sales process by terminating any instances as soon as the inventory level reaches 0.
Setting 8 = 0.95, 2o =1 and C(z) = %x2, for each policy we:

1. Sample N random prices from P to construct qi,qs,...,qny which then de-
termines the sample-based policy u (either SAA or MPC).
2. Sample a random price p; from P, accrue reward B~ (pyu(zs_1,pr) —C (w1 —
w(xi—1,p¢))) and set xy = v,y — u(T—1,Pp)-
3. Repeat Step 2 from stage t = 1 to T'— 1 and sell any remaining stock at stage
T to generate Zle B peu(zi—1,pt) — Clai—1 — w(wi_1,p1)))-
We repeat Steps 1 through 3 to generate realisations for use as an estimate of the
expected value of the SIC problem when a policy u is used out-of-sample. In our
experiments we used 50000 realisations to generate the estimate of the expected value
and found that this was sufficient to achieve accurate values. In Figures 3-5 and 7
the standard error ranges are smaller than the markers and so are not shown. Also
note that for V =1 the two sample-based policies coincide.

5.1. Triangularly distributed prices. Suppose P ~ Triangular(a,m,b), with
lower limit a, mode m, and upper limit . This is not a particularly realistic dis-
tribution but serves to illustrate the effect of skew on the performance of SAA and
MPC. In what follows we select a, m, and b such that E[P] = 1 and Var[P] = {; the
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Fic. 3. Ezpected out-of-sample reward of SAA and MPC for P ~ Triangular(0, %, %), a left-
skewed distribution.
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Fia. 4. Ezxpected out-of-sample reward of SAA and MPC  for

P ~ Triangular(l — %\/g, 1,1+ %\/g), a symmetric distribution.

intention being to confine differences between SAA and MPC to the sampling effects
of skew only and compare them on different distributions as fairly as possible.

Figure 3 shows SAA outperforming MPC for all N on a price distribution that
is triangular and left-skewed. This is in contrast to Figure 4, which shows MPC
outperforming SAA for N < 5 on a price distribution that is triangular and symmetric.
Replacing the left-skewed price distribution that yields Figure 3 with a symmetric
distribution increases the value of b. Samples with high prices then cause the SAA
policy to under-sell and pay too much in storage costs. The MPC policy attenuates
this effect since un; > us.

Further increasing ¢ to 2 increases the range where MPC outperforms SAA, as
can be seen in Figure 5, which shows MPC outperforming SAA for N < 6 on a price
distribution that is triangular and right-skewed.

5.2. Log-normally distributed prices. Suppose that P ~ LogNormal (u, 02),
with mean p and variance o2, Log-Normal distributions are often used to model prices
in financial applications and have a significant right-skew (see e.g. Figure 6).

Figure 7 shows MPC outperforming SAA for all N less than about 50, a sig-
nificantly larger range than that in Figure 5. The significant right-skew of the Log-
Normal distribution increases the propensity for a single very large price sample to
be included in q1, g2, . . . , ¢y which degrades the quality of the approximate price dis-
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F1G. 6. Probability density of p € [0,3] for P ~ LogNormal (—%, 1).

tribution informing the SAA policy. Figure 8 demonstrates this explicitly in the case
where N = 2; typical price samples result in the SAA policy outperforming the MPC
policy, but for a small proportion of more extreme samples, where one of the samples
is very large, the reverse occurs and the MPC policy significantly outperforms the
SAA policy.

6. A distributionally robust interpretation of MPC. Proposition 3.7 and
the examples in sections 4 and 5 show that the lower target inventory of the MPC
policy can be beneficial as it reduces sensitivity to large price samples. In the following
section we show that this effect can be seen as an example of distributional robustness.

Distributionally robust optimisation (DRO) is an approach to stochastic opti-
mization that intends to protect decision-makers from ambiguity in the specification
of the underlying probability distributions. DRO problems optimise against the worst
case element of an ambiguity set, in which the true distribution is believed to lie. By
considering the worst cases, distributionally robust estimates are usually less sensitive
to outliers and in some cases give better out-of-sample expected performance [1].

The seminal work [7] specified an ambiguity set by requiring its elements have
certain first and second moments. We will show that the MPC optimization problem
is equivalent to a multistage DRO problem with an ambiguity set specified by the
first moment of the empirical price distribution.

Let P(R) denote the set of possible probability distributions on the real line

This manuscript is for review purposes only.



568
569

570

ot
~

Tt = W N

© o

JEES BIES BEES P BEES IS IR IS

o
en)

v Ov Ot Ot Ot Ot Ot Ot Ot

APPROACHES TO MULTISTAGE INVENTORY OPTIMIZATION

1.3F o %]
L]
"O . ] L ] L ]
512t .,-': ]
g . J
[ ]
S 11 . .
el °
S 10}
15 A L]
] °
& 0.9 .
S . oM
. ® s
0.8k ]
10 10 10°
N

19

Fic. 7. Ezxpected out-of-sample reward of SAA and MPC for P ~ LogNormal(f%, l). Note

E[P] = 1.
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Fic. 8. Ezxpected out-of-sample reward of SAA minus that of MPC as a function of q1 and
g2 over [0,3] x [0, 3] for P ~ LogNormal (f%, 1). Darker contours indicate regions where the MPC
policy outperforms the SAA policy and vice versa. The contour that the right diagonal lies in is at
elevation 0 since the SAA and MPC policies are identical when q1 = q2.

for a random variable P. For some probability distribution u, define M;(u) =
{vr e P(R) : E,[P] = E,[P]}, this being the set of probability distributions having the
same first moment as p. Now define the distributionally robust functional equation

(6.1) Vi(z,p) := sup

0<u<z

u—C (x—u)+ inf
& @-w+p il

Vil — Pl |

(We defer showing that a function satisfying (6.1) actually exists until the proof
of Proposition 6.1.) The distributionally robust functional equation (6.1) selects the
worst-case distribution in M (u) for each candidate policy w. This process propagates
through the definition of the functional equation, such that the resulting optimal pol-
icy is protected against the worst case distribution in the current stage and the worst
case distributions in all future stages, simultaneously. Although this is inconsistent
with the modeling assumption that the price distribution at each stage is independent
and identically distributed, in this case the worst case distribution is unique, and we
have the following result.
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PROPOSITION 6.1. The solution Vi(x,p) to the MPC recursion
(6.2 Vas(e.p) = max {pu—C (@ — ) + BVu(z - ., [P))
is the unique solution to (6.1).

Proof. For any VR satisfying (6.1) and any v € M;(u) it follows that

EV [VR(J?, P)}
=E, [ sup {Pu —Cz—u)+ B inf E,[Vr(z—u, P’)]H
0<u<a v EM (p)

> sup {]El, [Pu —Clx—u)+p inf E,[Vr(z—u, P’)]} }
0<u<z v'eMy(p)

= sup {EN[P}u —Clx—u)+p inf E,[Vr(z—u, P’)]}
0<u<z v'eMi(p)

= Vr(z,E,[P)).

where the second equality follows since E, [P] = E,,[P].
But the probability distribution with all of its mass at E,[P] is in M; (), which
means that inf, ¢, () Ev[Vr (2, P)] = Vr(2,E,[P]), and so

ﬁyej\l/llf(ﬂ) EU[VR(x - u,P)] = ,BVR(.I - u,]EH[P]).

This shows that (6.1) is equivalent to the recursion

Vr(z,p) = sup {pu—C(z —u)+ Vr(z —u,E,[P])}

0<u<Llz

which has solution Vyy(x,p). Lastly, we know that Vj; exists by Theorem 9.2 of [11,
p. 246], concluding the proof. d

When g is the empirical distribution on the samples ¢;, o, . . . , ¢, Proposition 6.1
shows that the MPC policy uy; is distributionally robust. This can be helpful as a lens
for understanding MPC: when viewed as distributionally robust we expect to see a a
shrinkage effect, which occurs here because uy; > ug. This can yield an improvement
in out-of-sample expected reward when variance reduction outweighs any increase in
bias.

7. Conclusions. We studied the performance of SAA and MPC on a multistage
stochastic inventory control problem, finding that MPC can outperform SAA when the
underlying price distribution is right-skewed and NV is not too large. In the case where
the underlying price distribution is exponential, MPC can outperform SAA regardless
of the size of N. The good performance of MPC can be explained by viewing it through
the lens of a distributional robustification, challenging the assumption that stochastic
dynamic programming is always the right solution approach.
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REFERENCES

This manuscript is for review purposes only.



615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642

[10]

[11]
(12]

(13]

E.

J.

M

> > @ » U

N.

H.

APPROACHES TO MULTISTAGE INVENTORY OPTIMIZATION 21

ANDERSON AND A. PHILPOTT, Improving sample average approzimation using distributional
robustness, INFORMS Journal on Optimization, 4(1) (2022), pp. 90-124.

BEzANSON, A. EDELMAN, S. KARPINSKI, AND V. SHAH, Julia: A fresh approach to numerical
computing, SIAM Review, 59 (2017), pp. 65-98.

. DYER AND L. STOUGIE, Computational complezity of stochastic programming problems,
Mathematical Programming, 106 (2006), pp. 423—.

. MARTIN, Stochastic optimization for the procurement of crude oil in refineries, PhD thesis,

Ecole des Ponts ParisTech, 2021.

. MAYNE, Model predictive control: Recent developments and future promise, Automatica, 50

(2014), pp. 2967-2986.

. MESBAH, Stochastic model predictive control: An overview and perspectives for future re-

search, IEEE control systems, 36 (2016), pp. 30—44.

. SCARF, A min-maz solution of an inventory problem, Studies in the Mathematical Theory

of Inventory and Production, (1958), pp. 201—-209.

. SHAPIRO, On complexity of multistage stochastic programs, Operations Research Letters, 34

(2006), pp. 1-8.

. SHAPIRO, D. DENTCHEVA, AND A. RUSZCZYNSKI, Lectures on Stochastic Programming:

Modeling and Theory, Society for Industrial and Applied Mathematics, Philadelphia, PA,
3rd ed., 2021.

. SHAPIRO AND A. NEMIROVSKI, On complexity of stochastic programming problems, in Con-

tinuous Optimization: Current Trends and Modern Applications, V. Jeyakumar and A. Ru-
binov, eds., Springer US, Boston, MA, 2005, pp. 111-146.

STOKEY, R. LucAs, AND E. PRESCOTT, Recursive Methods in Economic Dynamics, Harvard
University Press, Cambridge, MA, 1989.

THEIL, A note on certainty equivalence in dynamic planning, Econometrica, 25 (1957),
pp. 346-349.

W. ZIEMBA, Transforming stochastic dynamic programming problems into nonlinear programs,

Management Science, 17 (1971), pp. 450-462.

This manuscript is for review purposes only.



	Introduction
	A stochastic inventory control problem
	Out-of-sample performance
	Derivative of the expected value function
	Comparing MPC and SAA

	Exponentially distributed prices
	Numerical studies
	Triangularly distributed prices
	Log-normally distributed prices

	A distributionally robust interpretation of MPC
	Conclusions
	References

