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1. Introduction. Multistage stochastic optimization problems are in general15

very difficult to solve. Although one can create scenario-tree approximations of such16

problems based on samples of the random variables in each stage (called sample17

average approximation or SAA), the number of samples required to solve the true18

problem to ϵ-accuracy grows exponentially with the number of stages [10, 8] and the19

resulting optimization problems are computationally expensive to solve [3]. Beyond20

two-stage stochastic programming problems where the almost sure convergence of21

SAA has been thoroughly explored (see [9]), the performance of SAA on multistage22

problems has received little attention apart from the aforementioned negative results.23

Multistage stochastic optimization problems become easier when the random vari-24

ables are stage-wise independent or follow a Markov process and the problem can25

be formulated as a stochastic optimal control problem, where decisions are controls26

that affect state variables obeying some dynamics. In principle, such problems are27

amenable to solution by stochastic dynamic programming methods, or some approxi-28

mate form of these, as long as the dimension of the state variable is not too large. Of29

course stochastic dynamic programming methods must compute expected values and30

so some discretization of the random variables is required to enable this. Here SAA31

provides a natural methodology and has the property that the sample expected values32

for a sample size N will converge almost surely by the strong law of large numbers to33

their true values as N → ∞.34

Stochastic optimal control problems do not have to be solved using a dynamic35

programming approach. In many practical settings (e.g., where state dimension is36

high and controls and states are subject to complicated constraints) model predictive37

control (MPC) can be used. There has been an enormous amount of work in control38

theory exploring the use of model predictive control in various contexts (see [5, 6]). In39

our situation we consider a relatively simple problem in which the state variables are40

fully observed, state constraints are simple, and we can find explicit solutions for the41

infinite horizon problems that we need. In this case the MPC approach fixes random42
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variables at their expectation and solves a deterministic optimal control problem.43

(One can either assume that the expectations are known exactly, or estimate them44

from a random sample. We focus on the second case in this work.) The optimal policy45

that solves this deterministic problem is applied in the first stage only and a new46

deterministic problem is formed from stage 2 onwards in a rolling horizon manner.47

There have been comparisons of SAA and MPC by simulation out-of-sample, and48

MPC does well in certain circumstances (see e.g. [4]). However, the reasons for49

this good performance have not been fully explored. Although the SAA and MPC50

solutions coincide when the certainty equivalence property holds [12, 13], this does51

not explain the success of MPC in more general conditions.52

Our aim in this paper is to advance our understanding of SAA and MPC applied53

to stochastic control problems. To do this we restrict attention to a specific class54

of inventory problems with a one-dimensional state variable. This simple stochastic55

inventory control problem (SIC) seeks to maximize the expected reward from selling56

a fixed inventory of some item at a random and varying price over an infinite horizon.57

The price at each stage is assumed to be independent of other prices and identically58

distributed. At each stage the inventory held incurs an inventory cost that we assume59

is an increasing strictly convex function. This problem is simple enough to admit60

a closed-form optimal policy for any bounded price distribution, but complicated61

enough to provide a suitable laboratory to test the performance of SAA and MPC.62

Given the SIC model and some ground-truth price distribution, for any price63

samples we can compute an SAA policy and compute its expected reward under64

the true price distribution. Similarly, we can compute an MPC policy based on the65

sample average of the random prices, and compute its expected reward under the66

true price distribution. The expectation of these two statistics over the sampling67

distribution gives a measure of out-of-sample performance of each approach. Our68

study is motivated by the question:69

Under what conditions does Model Predictive Control do better out70

of sample than the optimal dynamic programming solution based on71

Sample Average Approximation?72

We observe that the performance of SAA is poor when price distributions have a73

long right tail. In this setting the price samples will occasionally contain a very high74

price, causing the SAA policy to anticipate high prices too frequently and pay too75

much in storage costs in the meantime. MPC policies attenuate this effect when it76

occurs and can perform better than SAA out-of-sample.77

The paper is laid out as follows. We begin in section 2 by formulating our inven-78

tory problem and deriving a formula for its optimal solution as a function of the price79

probability distribution. This formula can be used to determine an SAA policy based80

on the empirical distribution of price samples, as well as an MPC policy based on81

the sample-average price. In section 3 we compare the out-of-sample performance of82

these two policies under some simple assumptions on the ground-truth price distribu-83

tion, and provide conditions on the price samples which ensure that the MPC policy84

performs at least as well as the SAA policy. In section 4 we assume an exponential85

distribution for price and show that the expected out-of-sample improvement from us-86

ing MPC instead of SAA becomes arbitrarily large as the discount factor approaches87

1. In section 5 we report some numerical experiments that support the theoretical88
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APPROACHES TO MULTISTAGE INVENTORY OPTIMIZATION 3

results of previous sections. We close the paper in section 6 by giving an interpre-89

tation of MPC as a distributional robustification of SAA that uses a moment-based90

ambiguity set, providing a different lens for viewing the performance differences of91

SAA and MPC.92

2. A stochastic inventory control problem. To study the performance of93

SAA and MPC, we will look at a particular stochastic inventory control problem that94

can be formulated as95

SIC: max
{u1,u2,...}

E

[ ∞∑
t=1

βt−1 (Ptut − C(xt))

]
96

where xt and ut satisfy97

xt = xt−1 − ut, t = 1, 2, . . .98

ut ∈ [0, xt−1] , t = 1, 2, . . . ,99100

and ut depends only on the price history {P1, P2, . . . , Pt} up to time t (i.e. the101

standard non-anticipativity constraints). The value of x0 ≥ 0, the initial inventory102

level, is given. Here β ∈ (0, 1) is a discount factor, Pt is a random price with finite103

expectation and C is an increasing strictly convex and differentiable function with104

derivative c. Because c is a strictly increasing continuous function, we may define an105

inverse function, c−1, on the range of c. The problem SIC can be interpreted as the106

problem facing a merchant who maximizes expected discounted reward by selling at107

each time t an amount of stock ut at a realisation of the random price Pt from their108

current inventory xt−1, while incurring a storage cost C(xt−1 − ut) on their remaining109

inventory.110

In what follows, we analyse the optimal solution of SIC and approximations of111

SIC that come from either an empirical distribution using a set of samples drawn from112

{Pt} or assuming the price is fixed. To keep this analysis simple we make following113

assumptions:114

Assumption 2.1. The random prices Pt are independent and identically distrib-115

uted on a bounded interval [pL, pU], having probability distribution P.116

Assumption 2.2. The inventory cost is a continuously differentiable function C :117

R+ 7→ R+ with C(0) = 0 and limx→∞ c(x) = ∞.118

Under Assumption 2.1, we drop dependence of the random price Pt on the index119

t and for x ≥ 0 define the dynamic programming functional equation120

(2.1) Ṽ (x) = E
[
max

0≤u≤x

{
Pu− C(x− u) + βṼ (x− u)

}]
.121

Observe that the mapping (u, p) 7→ pu − C(x − u) is bounded on the compact set122

[0, x] × [pL, pU] and β < 1. It follows that SIC has a finite optimal value, and by123

Theorem 9.2 of [11, p. 246] this is equal to Ṽ (x0). In addition, the mapping x 7→124

pu− C(x− u) is continuous and strictly concave and the feasible region [0, x] is a125

convex set. Strict concavity of Ṽ (x) then follows by Theorem 9.8 of [11, p. 265].126

With Ṽ (x) strictly concave and bounded on bounded sets, it follows that Ṽ (x) is also127

continuous and therefore must have a non-empty superdifferential which we denote128

by ∂Ṽ (x).129
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For a given price p and current inventory x the optimum expected discounted130

reward from this point on is given by131

(2.2) V (x, p) = max
0≤u≤x

{
pu− C(x− u) + βṼ (x− u)

}
,132

where the optimal choice of action is given by the maximizing value u.133

Denote the projection of y ∈ R onto the closed interval [a, b] by (y)[a,b] =134

max{a,min{b, y}}. We write (y)[a,∞) = max{a, y} and (y)+ = max{y, 0}.135

Proposition 2.3. Under Assumptions 2.1 and 2.2, the right-hand side of (2.2)136

has optimal solution137

u(x, p) = x− c−1
(
(βE[(P − p)+] + βp − p)[c(0),c(x)]

)
.138

139

Proof. Observe that the change of variables w = x− u yields140

(2.3) V (x, p) = max
0≤w≤x

{p(x− w)− C(w) + βṼ (w)}.141

Let142

φp(w) = p(x− w)− C(w) + βṼ (w).143

For any values of x and p the mapping w 7→ φp(w) is strictly concave and has a144

nonempty superdifferential ∂φp(w), so for x ≥ 0 the optimization max0≤w≤x φp(w)145

has a unique solution w∗(x, p) ∈ [0, x] satisfying146

0 ∈ ∂φp(w
∗(x, p)) +N (w∗(x, p)),147

where N (w∗(x, p)) is the normal cone of [0, x] at w∗(x, p). Since the derivative c(w) is148

strictly increasing and unbounded above, φp(w) is decreasing for w large enough and149

there will be a unique solution w(p) to maxw≥0 φp(w) which is equal to w∗(x, p) when150

projected onto [0, x]. Observe that the function w(p) is decreasing, and it follows151

that for any x there exists some critical price pC(x) such that for p ≥ pC(x) we have152

w(p) ≤ x and for p ≤ pC(x) we have w(p) ≥ x.153

Denote by ∂Vp(x) the superdifferential of the mapping x 7→ V (x, p). When p ≥154

pC(x), we have w(p) ≤ x, so w∗(x, p) = (w(p))+ and155

V (x, p) = p(x− (w(p))+)− C((w(p))+) + βṼ ((w(p))+).156

In this case it follows that p ∈ ∂Vp(x).157

On the other hand, when p ≤ pC(x) we have w(p) ≥ x, so w∗(x, p) = x and158

(2.4) V (x, p) = −C(x) + βṼ (x).159

For all x > 0, (2.4) implies that

−c(x) + β∂Ṽ (x) ⊆ ∂Vp(x).

So any g̃ ∈ ∂Ṽ (x) defines a supergradient −c(x) + βg̃ in ∂Vp(x). Let160

h(g̃, p) =

{
p, p ≥ pC(x)
−c(x) + βg̃, p < pC(x)

.161
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By Theorem 7.46 of [9, p. 371], Ṽ (x) = E[V (x, P )] has directional derivatives at every162

x, so163

E[h(g̃, P )] ∈ ∂Ṽ (x).164

It is easy to see that the mapping T : ∂Ṽ (x) 7→ ∂Ṽ (x) defined by165

T (g̃) = (βg̃ − c(x))P[P < pC(x)] + E[P |P ≥ pC(x)]P[P ≥ pC(x)]166

is a contraction with Lipschitz constant strictly less than 1, since for any g̃, g̃′ ∈ ∂Ṽ (x)167

|T (g̃)− T (g̃′)| = |g̃ − g̃′|βP[P < pC(x)] < |g̃ − g̃′| .168

As ∂Ṽ (x) is a nonempty closed set, by the Banach fixed point theorem, there is a169

unique g̃(x) ∈ ∂Ṽ (x) satisfying T (g̃(x)) = g̃(x). But this implies170

g̃(x) = (βg̃(x)− c(x))P[P < pC(x)] + E[P |P ≥ pC(x)]P[P ≥ pC(x)]171

so172

(2.5) g̃(x) =
E[P |P ≥ pC(x)]P[P ≥ pC(x)]− c(x)P[P < pC(x)]

1− βP[P < pC(x)]
∈ ∂Ṽ (x).173

We now construct an optimal solution w(p) to maxw≥0 φp(w) as follows. First174

observe that β(E[(P − p)+] + p)− p is a strictly decreasing continuous function of p.175

If176

β(E[(P − p)+] + p)− p > c(0)177

for all p ∈ [pL, pU] then set pZ = pU. Otherwise let pZ be the unique solution to178

β(E[(P − p)+] + p)− p = c(0). We now define179

w(p) =

{
c−1(β(E[(P − p)+] + p)− p), p < pZ
0, p ∈ [pZ, pU]

180

If p < pZ then we have w(p) > 0 and181

w(p) = c−1 (β(E[(P − p)+] + p)− p)182

= c−1 (β (E[P |P ≥ p]P[P ≥ p] + pP[P < p])− p) .183

We can rearrange this to give184

(2.6) (1− βP[P < p])p+ c(w(p)) = βP[P ≥ p]E[P | P ≥ p].185

Thus186

(1− βP[P < p])(p+ c(w(p))) = −βc(w(p))P[P < p] + βP[P ≥ p]E[P | P ≥ p],187

and hence188

(2.7) − p− c(w(p)) + β
−c(w(p))P[P < p] + E[P |P ≥ p]P[P ≥ p]

1− βP[P < p]
= 0.189

This manuscript is for review purposes only.



6 D. S. T. KEEHAN, A. B. PHILPOTT, AND E. J. ANDERSON

The definition of pC implies that p = pC(w(p)), and so (2.7) implies that if we define190

g̃(w(p)) by (2.5) then191

−p− c(w(p)) + βg̃(w(p)) = 0,192

and 0 ∈ ∂φp(w
∗(x, p)) showing that w(p) solves maxw≥0 φp(w).193

If p = pZ then a similar analysis shows that g̃(0) satisfies194

−pZ − c(0) + βg̃(0) = 0195

so for p ≥ pZ the right-hand derivative of p(x−w)−C(w) + βE[V (w,P )] at w = 0 is196

less than or equal to 0 implying that w(p) = 0 solves maxw≥0 φp(w).197

Combining both cases and projecting w(p) onto [0, x] yields198

w∗(x, p) = c−1
(
(βE[(P − p)+] + βp− p)[c(0),c(x)]

)
199

and200

u(x, p) = x− c−1
(
(βE[(P − p)+] + βp− p)[c(0),c(x)]

)
.201

Proposition 2.3 shows that SIC has an optimal target inventory level202

w∗(x, p) = c−1
(
(βE[(P − p)+] + βp− p)[c(0),c(x)]

)
203

at which the marginal cost of storage is as close as possible to the discounted expected204

increase in price above p in the next stage. The optimal SIC policy is then to reduce205

the current inventory level to w∗(x, p) if it is not already at w∗(x, p) by selling surplus206

stock.207

Proposition 2.3 makes no assumptions about the probability distribution P, except208

that it has bounded support. Thus P could have a density f with bounded support209

giving the optimal policy210

x− c−1

((
β

∫ pU

p

(q − p)f(q)dq + βp− p

)
[c(0),c(x)]

)
,211

or could consist of an empirical distribution on N price samples q1, q2, . . . , qN with212

P(qi) = 1
N , giving the SAA policy213

(2.8) uS(x, p) := x− c−1

(β 1

N

N∑
i=1

(qi − p)+ + βp− p

)
[c(0),c(x)]

 .214

We can also obtain an MPC policy from the samples q1, q2, . . . , qN by planning us-215

ing the sample average q̄ = 1
N

∑N
i=1 qi. In this case Proposition 2.3 would use the216

probability distribution that assigns probability 1 to q̄, giving E[(P − p)+] = (q̄− p)+217

so218

(2.9) uM(x, p) := x− c−1
(
(β(q̄ − p)+ + βp− p)[c(0),c(x)]

)
.219

For an initial inventory level x, the sample-based policies each have a critical price220

(that we denote by pS(x) and pM(x) for the SAA and MPC policies, respectively)221
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which is the minimum price required to be offered to the vendor for any stock to be222

sold. The critical price pS(x) is the unique p that solves β
1
N

∑N
i=1(qi − p)+ + βp− p =223

c(x) and a similar definition holds for pM(x). Depending on the samples q1, q2, . . . , qN ,224

each sample-based policy will either pay too much in storage costs by selling too little225

stock, or not be able to take full advantage of future high prices having sold too much226

stock. By Jensen’s inequality, (E[P ] − p)+ ≤ E[(P − p)+], whereby pM(x) ≤ pS(x)227

and uM(x, p) ≥ uS(x, p). In this way, the policy uM requires a lower price to sell stock228

than the policy uS and sells at least as much. We will explore the implications of this229

observation in the next section.230

3. Out-of-sample performance. The assumption that P lies within a bounded231

interval [pL, pU] is restrictive. Assumption 3.1 allows us to study the out-of-sample232

performance of the sample-based policies (derived using Proposition 2.3 on sample-233

based distributions that are discrete and therefore bounded) even when the underlying234

distribution is unbounded.235

Assumption 3.1. The random prices Pt are independent and identically distrib-236

uted, having a probability distribution P with support on R+, a finite mean, and no237

atoms.238

Suppose we observe N price samples q1, q2, ..., qN and use these to inform the239

sample-based policies as in (2.8) and (2.9). The value of the SIC problem if the240

(possibly sub-optimal) SAA policy is used is241

(3.1) V̄S(x0) :=

∞∑
t=1

βt−1E [PuS(xt−1, P )− C(xt)]242

where the values xt are random variables determined by successive prices and derived243

from an the initial value x0 using the actions uS. This is well-defined since the infinite244

series is easily shown to be convergent: the expectations at each stage are bounded245

and they are discounted by β < 1. To show boundedness, we note xt ≤ x0, C is246

non-negative and an increasing function, and uS(xt−1, P ) ≤ xt−1 ≤ x0, and thus247

−C(x0) ≤ E [PuS(xt−1, P )− C(xt)] ≤ E [P ]x0.248

Having defined V̄S as a function of the initial inventory, we also have V̄S satisfying249

the associated functional equation250

V̄S(x) = E
[
PuS(x, P )− C(x− uS(x, P )) + βV̄S(x− uS(x, P ))

]
.251

Similarly, the value of the SIC problem if the (possibly sub-optimal) MPC policy is252

used is well-defined and has an associated functional equation253

V̄M(x) = E
[
PuM(x, P )− C(x− uM(x, P )) + βV̄M(x− uM(x, P ))

]
.254

It is convenient to define255

B(x) :=
1

1− β
max{C(x),E [P ]x}.256

Then the bounds on the individual terms in V̄S and V̄M show that B(x) is an upper257

bound on both |V̄S(x)| and |V̄M(x)|.258
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3.1. Derivative of the expected value function. Before making comparisons259

between V̄S and V̄M we will first calculate their derivatives with respect to the initial260

inventory. It will be helpful to use a result of [9, p. 369], who give the following result261

(Theorem 7.44). Suppose that F : Rn × Ω → R is a random function with expected262

value f(x) = E[F (x, ω)].263

Lemma 3.2. If the following conditions hold:264

(A) The expectation f(x0) is well defined and finite valued at some point x0 ∈ Rn;265

(B) There exists a positive valued random variable L(ω) such that E[L(ω)] <266

∞, and for all x1, x2 in a neighbourhood of x0 and almost every ω ∈ Ω,267

|F (x1, ω)− F (x2, ω)| ≤ L(ω)∥x1 − x2∥;268

(C) For almost every ω the function F (x, ω) is differentiable with respect to x at269

x0;270

then f(x) is differentiable at x0 and271

∇f(x0) = E[∇xF (x0, ω)].272

273

Now we can establish the derivative values. Since V̄M is undefined for x < 0 the274

derivative d
dx V̄M(0) does not exist. However, at x = 0 the function V̄M(x) does have275

a right derivative, and for the rest of this paper the expression d
dx V̄M(x) implicitly276

refers to this right derivative when x = 0.277

Lemma 3.3. Under Assumptions 2.2 and 3.1, each of the derivatives of the ex-278

pected value functions exist and are given by279

d

dx
V̄S(x) =

E[P |P ≥ pS(x)]P[P ≥ pS(x)]− c(x)P[P < pS(x)]

1− βP[P < pS(x)]
280

and281

d

dx
V̄M(x) =

E[P |P ≥ pM(x)]P[P ≥ pM(x)]− c(x)P[P < pM(x)]

1− βP[P < pM(x)]
.282

283

Proof. The proof proceeds by first showing that the derivatives exist and then284

determining their values by a recursion. We begin by considering V̄S(x0). For a285

particular realisation ω = {p1, p2, . . .} of the random variables {P1, P2, . . .} the value286

function is determined by287

(3.2) VS(x0, ω) =

∞∑
t=1

βt−1(ptuS(xt−1, pt)− C(xt))288

The expectation of this is V̄S(x0) and is well-defined, satisfying condition (A) of289

Lemma 3.2. Consider a realization of (3.2) with prices {p1, p2, . . .}. Assume that290

there is some minimal index, T such that pT ≥ pS(x0), the critical price. Since P291

has no atoms, we know that pT > pS(x0) > max{p1, p2, . . . , pT−1} almost surely.292

The SAA policy with this price realisation will sell no stock until period T and293

the inventory levels are fixed at xt = x0 up to this point. At time T the SAA294

policy sells stock uS(xT−1, pT ) for the price pT . The resulting inventory level is295

xT = c−1
( (

β 1
N

∑
i(qi − pT )+ + βpT − pT

)
[c(0),∞)

)
which is independent of x0. Thus296

for all t′ > T the inventory levels xt′ are also independent of x0. Now, pS(x) is a297
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continuous function of x which means that pT > pS(x) > max{p1, p2, . . . , pT−1} also298

holds for x in a neighbourhood N about x0. This allows us to track the change in299

VS(x, ω) for different initial inventories x in this neighbourhood. If x1 > x2 then300

(3.3) VS(x1, ω)− VS(x2, ω) = pT (x1 − x2)−
T−1∑
t=1

βt−1(C(x1)− C(x2)).301

This has an absolute value upper bounded by θ(p1, p2, . . .)|x1 − x2| where302

θ(p1, p2, . . .) = pT +
1

1− β
2c(x0)303

and we choose N small enough so that for all x ∈ N we have the derivative c(x) <304

2c(x0). In the case that pt < pS(x0) for all t, so that pT is not defined, we can find a305

neighbourhood of x0 where (3.3) is replaced by306

(3.4) VS(x1, ω)− VS(x2, ω) = −
∞∑
t=1

βt−1(C(x1)− C(x2))307

and use a similar argument to show that θ(p1, p2, . . .) is also a Lipschitz constant for308

VS(x0, ω) in a neighbourhood about x0 in this case. Now309

E[θ(P1, P2, . . .)] ≤ E[P |P > pS(x0)] +
1

1− β
2c(x0) < ∞.310

So the existence of the function θ(p1, p2, . . .) verifies condition (B) of Lemma 3.2.311

Moreover, it is easy to see that (3.3) and (3.4) imply a well-defined derivative of312

VS(x0, ω) for almost all ω, hence satisfying the final condition (C) of Lemma 3.2.313

Thus we can use this result to show that d
dx0

V̄S(x0) exists and is finite. The proof is314

entirely similar for d
dx0

V̄M(x0).315

Let w̃(p) = c−1
( (

β 1
N

∑
i(qi − p)+ + βp− p

)
[c(0),∞)

)
. We can define316

VS(x, p) =

{
−C(x) + βV̄S(x) p < pS(x)

p(x− w̃(p))− C(w̃(p)) + βV̄S(w̃(p)) p ≥ pS(x)
.317

Then VS(x, p) is the expected value from following the SAA policy with initial in-318

ventory x and initial price p. So V̄S(x) = E [VS(x, p)]. We can use the same ap-319

proach as above, making use of the fact that d
dx V̄S(x) is well-defined to show that320

d
dx V̄S(x) = E

[
d
dxVS(x, p)

]
. Thus321

d

dx
VS(x, p) =

{
−c(x) + β d

dx V̄S(x) p < pS(x)
p p ≥ pS(x)

.322

Taking expectations we derive323

d

dx
V̄S(x) =

(
β

d

dx
V̄S(x)− c(x)

)
P[P < pS(x)] + E[P |P ≥ pS(x)]P[P ≥ pS(x)]324

and rearranging gives the required expression:325

d

dx
V̄S(x) =

E[P |P ≥ pS(x)]P[P ≥ pS(x)]− c(x)P[P < pS(x)]

1− βP [P < pS(x)]
.326

The expression for d
dx V̄M(x) can be derived via identical reasoning.327
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3.2. Comparing MPC and SAA. Our approach to compare the two different328

policies is to consider starting with the MPC policy and then switching to the SAA329

policy after a certain number of stages.330

Definition 3.4. Let331

D̄1(x) := E
[
PuS(x, P )− C(x− uS(x, P )) + βV̄M(x− uS(x, P ))

]
,332

and for t > 1,333

(3.5) D̄t(x) := E
[
PuS(x, P )− C(x− uS(x, P )) + βD̄t−1(x− uS(x, P ))

]
.334

The value D̄t(x0) is the value of the SIC problem if the policy uS is used for t335

stages and the policy uM is used forevermore. It is clear that D̄t is bounded in the336

same way that V̄S and V̄M are bounded, so Theorem 9.2 of [11, p. 246] again holds.337

Proposition 3.5. limt→∞
∣∣D̄t(x)− V̄S(x)

∣∣ = 0.338

Proof. The values D̄t(x0) and V̄S(x0) both implement the policy uS for the first339

t periods when starting with initial inventory x0. So340 ∣∣D̄t(x0)− V̄S(x0)
∣∣ = ∣∣E [βt

(
V̄M(xt)− V̄S(xt)

)]∣∣ ≤ βt2B(x0)341

where the expectation is taken with respect to the value xt which is a random variable342

under the application of the policy uS. As t → ∞, the bound βt2B(x0) → 0. Thus,343

limt→∞
∣∣D̄t(x0)− V̄S(x0)

∣∣ = 0. Replacing x0 with x concludes the proof.344

Lemma 3.6. If V̄M(x) ≥ D̄1(x) for all x ∈ [0, x0], then V̄M(x0) ≥ V̄S(x0).345

Proof. We will first show that D̄t(x) ≥ D̄t+1(x) for all t via induction. Since346

x− uS(x, p) ∈ [0, x0] for all x ∈ [0, x0], by the assumption in the statement of the347

lemma V̄M(x− uS(x, p)) ≥ D̄1(x− uS(x, p)). Thus348

D̄1(x) = E
[
PuS(x, P )− C(x− uS(x, P )) + βV̄M(x− uS(x, P ))

]
349

≥ E
[
PuS(x, P )− C(x− uS(x, P )) + βD̄1(x− uS(x, P ))

]
= D̄2(x).(3.6)350351

We make the inductive hypothesis: D̄t−1(x) ≥ D̄t(x) for all x ∈ [0, x0]. Of course352

x− uS(x, p) ∈ [0, x0] still holds, and by the inductive hypothesis D̄t−1(x− uS(x, p)) ≥353

D̄t(x− uS(x, p)) for all x ∈ [0, x0], so applying to (3.5) a similar line of reasoning354

as in (3.6) shows that D̄t(x) ≥ D̄t+1(x), as required. Setting x = x0 then shows355

that V̄M(x0) ≥ D̄t(x0) for all t ≥ 1. Thus, V̄M(x0) ≥ limt→∞ D̄t(x0) = V̄S(x0) where356

Proposition 3.5 yields the final equality.357

Proposition 3.7. Assume P has a density f . Under Assumptions 2.2 and 3.1,358

if c(x) ≥ β
∫∞
pS(x)

pf(p)dp for all x ∈ [0, x0], then V̄M(x0) ≥ V̄S(x0).359

Proof. In the context of the proposition we will first show that d
dx V̄M(x) ≥360

d
dxD̄1(x) for all x ∈ [0, x0]. As in Lemma 3.3361

d

dx
V̄M(x) =

(
β

d

dx
V̄M(x)− c(x)

)∫ pM(x)

−∞
f(p)dp+

∫ ∞

pM(x)

pf(p)dp.362

Inspecting D̄1(x) shows that the similar expression363

d

dx
D̄1(x) =

(
β

d

dx
V̄M(x)− c(x)

)∫ pS(x)

−∞
f(p)dp+

∫ ∞

pS(x)

pf(p)dp364
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also holds. Recalling pS(x) ≥ pM(x), it can be seen that365

d

dx
V̄M(x)− d

dx
D̄1(x) = −

(
β

d

dx
V̄M(x)− c(x)

)∫ pS(x)

pM(x)

f(p)dp+

∫ pS(x)

pM(x)

pf(p)dp.366

Using Lemma 3.3, we may write367

β
d

dx
V̄M(x)− c(x) = β

∫∞
pM(x)

pf(p)dp− c(x)
∫ pM(x)

−∞ f(p)dp

1− β
∫ pM(x)

−∞ f(p)dp
− c(x)368

=
β
∫∞
pM(x)

pf(p)dp− c(x)

1− β
∫ pM(x)

−∞ f(p)dp
369

so applying the condition in the statement of the proposition yields370

(3.7) β
d

dx
V̄M(x)− c(x) ≤

β
∫ pS(x)

pM(x)
pf(p)dp

1− β
∫ pM(x)

−∞ f(p)dp
.371

Now372

β
∫ pS(x)

pM(x)
pf(p)dp

1− β
∫ pM(x)

−∞ f(p)dp

∫ pS(x)

pM(x)

f(p)dp ≤
∫ pS(x)

pM(x)

pf(p)dp373

since we can cancel
∫ pS(x)

pM(x)
pf(p)dp and then rearrange to give β

∫ pS(x)

−∞ f(p)dp ≤ 1.374

Thus (3.7) yields375

(3.8)

(
β

d

dx
V̄M(x)− c(x)

)∫ pS(x)

pM(x)

f(p)dp ≤
∫ pS(x)

pM(x)

pf(p)dp,376

whereby377

d

dx
V̄M(x) ≥ d

dx
D̄1(x),378

as required. This implies that V̄M(x) ≥ D̄1(x) for all x ∈ [0, x0]. Lemma 3.6 then379

implies that V̄M(x0) ≥ V̄S(x0), as required.380

Recall the condition of Proposition 3.7: c(x) ≥ β
∫∞
pS(x)

pf(p)dp for all x ∈ [0, x0].381

This requires c(0) > 0. The critical price pS(x) is strictly increasing in the maximum382

sampled price qN in S. The term
∫∞
pS(x)

pf(p)dp is then strictly decreasing in qN and383

eventually vanishes. When f has infinite support we will occasionally encounter a384

qN that is sufficiently large for the inequality c(x) ≥ β
∫∞
pS(x)

pf(p)dp to hold for all385

x ∈ [0, x0], as long as
∫∞
pS(x)

pf(p)dp is not too large. In other words we can expect to386

encounter samples where V̄M(x0) > V̄S(x0) when f has a small amount of probability387

at high prices.388

As an example application of Proposition 3.7, suppose that β = 0.95, C(x) =389
1
2x

2 + 1
2x, x0 = 1, and P ∼ LogNormal

(
µ = − 1

2 , σ
2 = 1

)
with probability density f .390

Let N = 2 with q1 = 1
2 and q2 = 3. Numerically evaluating c(x) − β

∫∞
pS(x)

pf(p)dp391

for x ∈ [0, 1], Figure 1 shows that this difference is always positive which means that392

the condition of Proposition 3.7 is satisfied.393

This manuscript is for review purposes only.
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Fig. 1. The difference c(x)− β
∫∞
pS(x)

pf(p)dp over x ∈ [0, 1].

It follows that the MPC policy performs at least as well as the SAA policy does for394

the sampled prices q1 = 1
2 and q2 = 3 for the initial inventory level x0 = 1. The SAA395

and MPC policies in question are included in Figure 2, and they differ for certain396

values of the sales price p.397

Fig. 2. Stock sold by the SAA and MPC policies from the initial inventory level x0 = 1 over
p ∈ [0, 3]. Note that the stock sold is constrained to be less than 1 which causes the policies to
coincide at p ≈ 1.8 rather than p = q2 = 3.

If c(0) = 0, then the premise of Proposition 3.7 is not true. Despite this we present398

examples below which show that V̄M(x0) > V̄S(x0) can still occur when c(0) = 0.399

These examples all involve densities having a small amount of probability at high400

prices.401

4. Exponentially distributed prices. In this section we compare the expected402

out-of-sample rewards of the sample-based policies when C(x) = 1
2x

2 (so c(x) = x)403

and P has an exponential density with mean 1. Here c(0) = 0, so Proposition 3.7404

does not apply.405

For N ≥ 2, let S be a sample of size N drawn from the exponential distribution.406

First we consider the SAA solution to SIC using sample S when x0 = 1. The result407

below shows that the SAA solution performs very poorly. In fact the expected out of408

sample value approaches −∞ as β approaches 1. We will then compare this with the409

result if the MPC policy is used, instead of SAA.410

Proposition 4.1. When S = {q1, q2, . . . , qN} is a sample of size N ≥ 2 drawn411
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from the exponential distribution, then E[V̄S(1)] → −∞ as β → 1, where the expecta-412

tion is taken with respect to the sample S.413

Proof. We begin by considering fixed q1, q2, . . . , qN−1. Without loss of generality,414

it may be assumed that q1 ≤ q2 . . . ≤ qN−1. Consider first those samples where415

qN > N
β + qN−1(

N
β − (N −1)). This gives a policy that, on observing price p, aims for416

inventory target wS(p). If p > qN−1, then from (2.8), wS(p) = β
(qN−p)+

N − (1 − β)p.417

Now the critical value pS(x) occurs when wS(p) = x and so pS(x) = qNβ−Nx
N+β−Nβ . We418

are considering values of qN large enough so that pS(x) ∈ (qN−1, qN ] since x ∈ [0, 1].419

From Lemma 3.3,420

d

dx
V̄S(x) =

E[P |P ≥ pS(x)]P[P ≥ pS(x)]− c(x)P[P < pS(x)]

1− βP[P < pS(x)]
421

=

∫∞
pS(x)

pe−pdp− x(1− e−pS(x))

1− β(1− e−pS(x))
422

=
e−pS(x)(pS(x) + 1)− x(1− e−pS(x))

1− β(1− e−pS(x))
423

=
pS(x) + x+ 1− xepS(x)

(1− β)epS(x) + β
.424

Since V̄S(1) = 0 we deduce425

V̄S(1) = V̄S(1)
+ − V̄S(1)

−,426

where427

V̄S(1)
+ =

∫ 1

0

pS(x) + x+ 1

(1− β)epS(x) + β
dx > 0428

and429

V̄S(1)
− =

∫ 1

0

xepS(x)

(1− β)epS(x) + β
dx > 0.430

We will show that431

(4.1) lim
β→1

∫ ∞

N
β +qN−1(

N
β −(N−1))

V̄S(1)e
−qNdqN = −∞.432

First we show that V̄S(1)
+ is bounded for all β ∈ (0.5, 1). We have pS(x) ∈ [qN−1, qN ],433

so pS(x) + x+ 1 is bounded. If β > 0.5, then (1− β)epS(x) + β is bounded away from434

0, which shows that V̄S(1)
+ is bounded for all β ∈ (0.5, 1). Thus the component of435

the integral in (4.1) from V̄S(1)
+ is bounded.436

Now assume that there is some M such that for all β ∈ (0.5, 1) we have437

(4.2)

∫ ∞

N
β +qN−1(

N
β −(N−1))

V̄S(1)
−e−qNdqN < M,438
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14 D. S. T. KEEHAN, A. B. PHILPOTT, AND E. J. ANDERSON

and seek a contradiction. We write439 ∫ ∞

N
β +qN−1(

N
β −(N−1))

V̄S(1)
−e−qNdqN440

=

∫ ∞

N
β +qN−1(

N
β −(N−1))

∫ 1

0

xepS(x)e−qN

(1− β)epS(x) + β
dxdqN441

Observe first that both the numerator and denominator of the integrand are positive,442

and if β ∈ (0.5, 1) then443

(1− β)epS(x) + β ≤ (1− β)eqN + β.444

Since445

pS(x) =
qNβ −Nx

N + β −Nβ
446

the numerator is447

xepS(x)e−qN = xe
qNβ−Nx

N+β−Nβ e−qN448

= xe−N
qN (1−β)+x

N+β−Nβ449

= e−N
qN (1−β)

N+β−Nβ xe−
Nx

N+β−Nβ .450

451

Now for any β ∈ (0, 1), since N + β −Nβ > 1, we have452 ∫ 1

0

xe−
Nx

N+β−Nβ dx ≥
∫ 1

0

xe−Nxdx453

=
1

N2

(
1− (N + 1)e−N

)
,454

so455 ∫ ∞

N
β +qN−1(

N
β −(N−1))

∫ 1

0

e−qNxepS(x)

(1− β)epS(x) + β
dxdqN456

≥ 1

N2

(
1− (N + 1)e−N

) ∫ ∞

N
β +qN−1(

N
β −(N−1))

e−N
qN (1−β)

N+β−Nβ

(1− β)eqN + β
dqN457

For all q > 0 we have458

∂

∂q

(
e−N

q(1−β)
N+β−Nβ

(1− β)eq + β

)
459

= −e−Nq
(1−β)

N+β−Nβ
1− β

(N + β −Nβ) (β + eq − βeq)
2 (Nβ + βeq + 2Neq(1− β))460

which is negative, so the integrand is decreasing. Moreover for any q > N
β +qN−1(

N
β −461

(N − 1)), limβ→1
e
−N

q(1−β)
N+β−Nβ

(1−β)eq+β = 1, so there is some β < 1 with462

e−N
q(1−β)

N+β−Nβ

(1− β)eq + β
>

1

2
.463
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It follows that for any such q we can find β < 1 so that464 ∫ q

N
β +qN−1(

N
β −(N−1))

e−N
q(1−β)

N+β−Nβ

(1− β)eq + β
dqN >

1

2
(q − (

N

β
+ qN−1(

N

β
− (N − 1)))).465

By choosing q large enough we can make466

1

N2

(
1− (N + 1)e−N

) ∫ ∞

N
β +qN−1(

N
β −(N−1))

e−N
q(1−β)

N+β−Nβ

(1− β)eq + β
dqN > M467

contradicting (4.2).468

Now for all qN in the range [0, N
β + qN−1(

N
β − (N − 1))] it is easy to show that469

V̄S(1) is bounded for all β ∈ (0, 1). It follows for every fixed q1, q2, . . . , qN−1 that470 ∫ ∞

0

V̄S(1)e
−qNdqN471

is unbounded below as β → 1.472

This statement is true independent of the values of q1, q2, . . . , qN−1. So if we473

take an expectation with respect to the (joint exponential) sampling distribution474

on q1, q2, . . . , qN−1 then this will also be unbounded below as β → 1. Thus the475

out-of-sample losses incurred by the sample average approximation solution uS are476

unbounded as β → 1, regardless of the choice of N .477

In contrast to the SAA result, the expected value of the out-of-sample cost for478

the MPC policy is bounded as β → 1. For simplicity we demonstrate this in the479

case N = 2, although it can be shown to hold in general. The expected value of the480

out-of-sample cost for the MPC policy is481

(4.3)

∫ ∞

0

(∫ ∞

0

V̄M(1)e−q2dq2

)
e−q1dq1.482

where Lemma 3.3 gives483

V̄M(1) =

∫ 1

0

pM(x) + x+ 1− xepM(x)

(1− β)epM(x) + β
dx.484

The negative part of V̄M(1) is485

V̄M(1)− =

∫ 1

0

xepM(x)

(1− β)epM(x) + β
dx.486

Let q = 1
2 (q1 + q2). Recall that pM(x) = (βq − x)+, so487

V̄M(1)− =

∫ min{βq,1}

0

xeβq−x

(1− β)eβq−x + β
dx+

∫ 1

min{βq,1}
xdx488

≤
∫ min{βq,1}

0

xeβq−x

β
dx+

∫ 1

0

xdx489

≤ eq

eβ
+

1

2
.490
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Therefore491 ∫ ∞

0

(∫ ∞

0

V̄M(1)−e−q2dq2

)
e−q1dq1 ≤ 1

eβ

∫ ∞

0

(∫ ∞

0

e
1
2 (q1+q2)e−q2dq2

)
e−q1dq1 +

1

2
492

=
4

eβ
+

1

2
.493

Thus, as long as β ∈ (0, 1) is bounded away from 0, we have∫ ∞

0

(∫ ∞

0

V̄M(1)−e−q2dq2

)
e−q1dq1 < ∞

so494 ∫ ∞

0

(∫ ∞

0

V̄M(1)e−q2dq2

)
e−q1dq1 > −∞.495

Moreover, identical reasoning as in the SAA case shows that (4.3) has a finite-valued496

positive part. Thus, when N = 2, the expected out-of-sample loss incurred under the497

MPC policy is bounded as β → 1.498

5. Numerical studies. In this section we use numerical simulation to study499

the performance of the two sample-based policies (SAA and MPC) on different price500

distributions. In section 4 we showed that MPC is far better then SAA with an501

exponential distribution. But this is an exception—we do not usually find this extreme502

behaviour with the two expected out-of-sample values differing by an amount that is503

unbounded as β → 1. However this case does suggest that the amount of skew in the504

underlying distribution is important, and we will explore this in this section.505

To compute the expected out-of-sample performance of the sample-based policies506

under the sampling distribution of q1, q2, . . . , qN , we use a simulation coded in the507

Julia programming language [2]. Although the true problem has an infinite number508

of stages, simulation with a finite number of stages (say T ) will give a realistic estimate509

as long as it is sufficiently large. We set T = 1000 and efficiently simulate the repeated510

sales process by terminating any instances as soon as the inventory level reaches 0.511

Setting β = 0.95, x0 = 1 and C(x) = 1
2x

2, for each policy we:512

1. Sample N random prices from P to construct q1, q2, . . . , qN which then de-513

termines the sample-based policy u (either SAA or MPC).514

2. Sample a random price pt from P, accrue reward βt−1(ptu(xt−1, pt)−C(xt−1−515

u(xt−1, pt))) and set xt = xt−1 − u(xt−1, pt).516

3. Repeat Step 2 from stage t = 1 to T −1 and sell any remaining stock at stage517

T to generate
∑T

t=1 β
t−1(ptu(xt−1, pt)− C(xt−1 − u(xt−1, pt))).518

We repeat Steps 1 through 3 to generate realisations for use as an estimate of the519

expected value of the SIC problem when a policy u is used out-of-sample. In our520

experiments we used 50000 realisations to generate the estimate of the expected value521

and found that this was sufficient to achieve accurate values. In Figures 3-5 and 7522

the standard error ranges are smaller than the markers and so are not shown. Also523

note that for N = 1 the two sample-based policies coincide.524

5.1. Triangularly distributed prices. Suppose P ∼ Triangular(a,m, b), with525

lower limit a, mode m, and upper limit b. This is not a particularly realistic dis-526

tribution but serves to illustrate the effect of skew on the performance of SAA and527

MPC. In what follows we select a, m, and b such that E[P ] = 1 and Var[P ] = 1
8 ; the528
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Fig. 3. Expected out-of-sample reward of SAA and MPC for P ∼ Triangular(0, 3
2
, 3
2
), a left-

skewed distribution.

Fig. 4. Expected out-of-sample reward of SAA and MPC for
P ∼ Triangular(1− 1

2

√
3, 1, 1 + 1

2

√
3), a symmetric distribution.

intention being to confine differences between SAA and MPC to the sampling effects529

of skew only and compare them on different distributions as fairly as possible.530

Figure 3 shows SAA outperforming MPC for all N on a price distribution that531

is triangular and left-skewed. This is in contrast to Figure 4, which shows MPC532

outperforming SAA forN ≤ 5 on a price distribution that is triangular and symmetric.533

Replacing the left-skewed price distribution that yields Figure 3 with a symmetric534

distribution increases the value of b. Samples with high prices then cause the SAA535

policy to under-sell and pay too much in storage costs. The MPC policy attenuates536

this effect since uM ≥ uS.537

Further increasing c to 2 increases the range where MPC outperforms SAA, as538

can be seen in Figure 5, which shows MPC outperforming SAA for N ≤ 6 on a price539

distribution that is triangular and right-skewed.540

5.2. Log-normally distributed prices. Suppose that P ∼ LogNormal
(
µ, σ2

)
,541

with mean µ and variance σ2. Log-Normal distributions are often used to model prices542

in financial applications and have a significant right-skew (see e.g. Figure 6).543

Figure 7 shows MPC outperforming SAA for all N less than about 50, a sig-544

nificantly larger range than that in Figure 5. The significant right-skew of the Log-545

Normal distribution increases the propensity for a single very large price sample to546

be included in q1, q2, . . . , qN which degrades the quality of the approximate price dis-547
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Fig. 5. Expected out-of-sample reward of SAA and MPC for P ∼ Triangular( 1
2
, 1
2
, 2), a right-

skewed distribution.

Fig. 6. Probability density of p ∈ [0, 3] for P ∼ LogNormal
(
− 1

2
, 1

)
.

tribution informing the SAA policy. Figure 8 demonstrates this explicitly in the case548

where N = 2; typical price samples result in the SAA policy outperforming the MPC549

policy, but for a small proportion of more extreme samples, where one of the samples550

is very large, the reverse occurs and the MPC policy significantly outperforms the551

SAA policy.552

6. A distributionally robust interpretation of MPC. Proposition 3.7 and553

the examples in sections 4 and 5 show that the lower target inventory of the MPC554

policy can be beneficial as it reduces sensitivity to large price samples. In the following555

section we show that this effect can be seen as an example of distributional robustness.556

Distributionally robust optimisation (DRO) is an approach to stochastic opti-557

mization that intends to protect decision-makers from ambiguity in the specification558

of the underlying probability distributions. DRO problems optimise against the worst559

case element of an ambiguity set, in which the true distribution is believed to lie. By560

considering the worst cases, distributionally robust estimates are usually less sensitive561

to outliers and in some cases give better out-of-sample expected performance [1].562

The seminal work [7] specified an ambiguity set by requiring its elements have563

certain first and second moments. We will show that the MPC optimization problem564

is equivalent to a multistage DRO problem with an ambiguity set specified by the565

first moment of the empirical price distribution.566

Let P(R) denote the set of possible probability distributions on the real line567
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Fig. 7. Expected out-of-sample reward of SAA and MPC for P ∼ LogNormal
(
− 1

2
, 1

)
. Note

E[P ] = 1.

Fig. 8. Expected out-of-sample reward of SAA minus that of MPC as a function of q1 and
q2 over [0, 3]× [0, 3] for P ∼ LogNormal

(
− 1

2
, 1

)
. Darker contours indicate regions where the MPC

policy outperforms the SAA policy and vice versa. The contour that the right diagonal lies in is at
elevation 0 since the SAA and MPC policies are identical when q1 = q2.

for a random variable P . For some probability distribution µ, define M1(µ) :=568

{ν ∈ P(R) : Eν [P ] = Eµ[P ]}, this being the set of probability distributions having the569

same first moment as µ. Now define the distributionally robust functional equation570

(6.1) VR(x, p) := sup
0≤u≤x

{
pu− C (x− u) + β inf

ν∈M1(µ)
Eν [VR(x− u, P )]

}
.571

(We defer showing that a function satisfying (6.1) actually exists until the proof572

of Proposition 6.1.) The distributionally robust functional equation (6.1) selects the573

worst-case distribution in M1(µ) for each candidate policy u. This process propagates574

through the definition of the functional equation, such that the resulting optimal pol-575

icy is protected against the worst case distribution in the current stage and the worst576

case distributions in all future stages, simultaneously. Although this is inconsistent577

with the modeling assumption that the price distribution at each stage is independent578

and identically distributed, in this case the worst case distribution is unique, and we579

have the following result.580
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Proposition 6.1. The solution VM(x, p) to the MPC recursion581

(6.2) VM(x, p) = max
0≤u≤x

{pu− C (x− u) + βVM(x− u,Eµ[P ])}582

is the unique solution to (6.1).583

Proof. For any VR satisfying (6.1) and any ν ∈ M1(µ) it follows that584

Eν [VR(x, P )]585

= Eν

[
sup

0≤u≤x

{
Pu− C(x− u) + β inf

ν′∈M1(µ)
Eν′ [VR(x− u, P ′)]

}]
586

≥ sup
0≤u≤x

{
Eν

[
Pu− C(x− u) + β inf

ν′∈M1(µ)
Eν′ [VR(x− u, P ′)]

]}
587

= sup
0≤u≤x

{
Eµ[P ]u− C(x− u) + β inf

ν′∈M1(µ)
Eν′ [VR(x− u, P ′)]

}
588

= VR(x,Eµ[P ]).589590

where the second equality follows since Eν [P ] = Eµ[P ].591

But the probability distribution with all of its mass at Eµ[P ] is in M1(µ), which592

means that infν∈M1(µ) Eν [VR(x, P )] = VR(x,Eµ[P ]), and so593

β inf
ν∈M1(µ)

Eν [VR(x− u, P )] = βVR(x− u,Eµ[P ]).594

This shows that (6.1) is equivalent to the recursion595

VR(x, p) = sup
0≤u≤x

{pu− C(x− u) + βVR(x− u,Eµ[P ])}596

which has solution VM(x, p). Lastly, we know that VM exists by Theorem 9.2 of [11,597

p. 246], concluding the proof.598

When µ is the empirical distribution on the samples qi, q2, . . . , qN , Proposition 6.1599

shows that the MPC policy uM is distributionally robust. This can be helpful as a lens600

for understanding MPC: when viewed as distributionally robust we expect to see a a601

shrinkage effect, which occurs here because uM ≥ uS. This can yield an improvement602

in out-of-sample expected reward when variance reduction outweighs any increase in603

bias.604

7. Conclusions. We studied the performance of SAA and MPC on a multistage605

stochastic inventory control problem, finding that MPC can outperform SAA when the606

underlying price distribution is right-skewed and N is not too large. In the case where607

the underlying price distribution is exponential, MPC can outperform SAA regardless608

of the size ofN . The good performance of MPC can be explained by viewing it through609

the lens of a distributional robustification, challenging the assumption that stochastic610

dynamic programming is always the right solution approach.611
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École des Ponts ParisTech, 2021.622
[5] D. Mayne, Model predictive control: Recent developments and future promise, Automatica, 50623

(2014), pp. 2967–2986.624
[6] A. Mesbah, Stochastic model predictive control: An overview and perspectives for future re-625

search, IEEE control systems, 36 (2016), pp. 30–44.626
[7] H. Scarf, A min-max solution of an inventory problem, Studies in the Mathematical Theory627

of Inventory and Production, (1958), pp. 201—-209.628
[8] A. Shapiro, On complexity of multistage stochastic programs, Operations Research Letters, 34629

(2006), pp. 1–8.630
[9] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Programming:631

Modeling and Theory, Society for Industrial and Applied Mathematics, Philadelphia, PA,632
3rd ed., 2021.633

[10] A. Shapiro and A. Nemirovski, On complexity of stochastic programming problems, in Con-634
tinuous Optimization: Current Trends and Modern Applications, V. Jeyakumar and A. Ru-635
binov, eds., Springer US, Boston, MA, 2005, pp. 111–146.636

[11] N. Stokey, R. Lucas, and E. Prescott, Recursive Methods in Economic Dynamics, Harvard637
University Press, Cambridge, MA, 1989.638

[12] H. Theil, A note on certainty equivalence in dynamic planning, Econometrica, 25 (1957),639
pp. 346–349.640

[13] W. Ziemba, Transforming stochastic dynamic programming problems into nonlinear programs,641
Management Science, 17 (1971), pp. 450–462.642

This manuscript is for review purposes only.


	Introduction
	A stochastic inventory control problem
	Out-of-sample performance
	Derivative of the expected value function
	Comparing MPC and SAA

	Exponentially distributed prices
	Numerical studies
	Triangularly distributed prices
	Log-normally distributed prices

	A distributionally robust interpretation of MPC
	Conclusions
	References

