Improving the Performance of Stochastic Dual Dynamic Programming

Vitor L. de Matos * and Andy B. Philpott [†] and Erlon C. Finardi [‡]

July 10, 2012

Abstract

This paper is concerned with tuning the Stochastic Dual Dynamic Programming algorithm to make it more computationally efficient. We report the results of some computational experiments on a largescale hydrothermal scheduling model developed for Brazil. We find that the best improvements in computation time are obtained from an implementation that increases the number of scenarios in the forward pass with each iteration and selects cuts to be included in the stage problems in each iteration. This gives an order of magnitude decrease in computation time with little change in solution quality.

Key words: stochastic programming; stochastic dual dynamic programming; cut selection; hydrothermal scheduling.

1 Introduction

The Stochastic Dual Dynamic Programming (SDDP) algorithm of Pereira and Pinto [5] is a well-known technique for attacking multi-stage stochastic linear programs that have a stage-wise independence property that makes them amenable to dynamic programming. This method approximates the future cost function of dynamic programming using a piecewise linear outer

^{*}Plan4 Engenharia, Brazil, vitor@plan4.com.br

[†]Electric Power Optimization Centre, University of Auckland, New Zealand, a.philpott@auckland.ac.nz

[‡]Laboratório de Planejamento de Sistemas de Energia Elétrica, Universidade Federal de Santa Catarina, Brazil, erlon.finardi@ufsc.br

approximation, defined by cutting planes computed by solving linear programs. This helps mitigate the curse of dimensionality that arises from discretizing the state variables. The intractability arising from a branching scenario tree is avoided by essentially assuming stage-wise independent uncertainty. This allows cuts to be shared between different states, effectively collapsing the scenario tree. Although it was developed over twenty years ago, and has been cited over the years in many applied papers, SDDP has received some recent attention in the mathematical programming literature (cite [3],[4],[6],[7],[8],[9]). These papers explore the mathematical properties of this method, in some cases extending it to deal with risk-averse objective functions.

This paper is concerned with some of the implementation details of SDDP algorithms. By carrying out some computational tests on a real application, we attempt to draw some conclusions about how the basic method might be improved by tuning it to build a near optimal policy in the shortest computation time. There are basically two techniques for tuning the algorithm that we shall investigate. The first concerns how one should visit the scenarios in the SDDP algorithm. The classical version of SDDP [5] samples a fixed number of scenarios for each "forward pass". We compare this with alternative strategies that traverses one scenario at a time [7], as well as in the one that increases the number of scenarios per pass as the algorithm proceeds (as discussed in [9]).

In tandem with scenario selection, we investigate several strategies for selecting cuts to include in the linear programming problems that are solved at each stage. This can lead to a dramatic decrease in computation time with little degradation in the performance of the policies obtained.

The paper is laid out as follows. In Section 2 we recall the basic algorithm for SDDP. Section 3 describes the three different tree-traversal strategies we shall test and Section 4 describes methods we use for selecting cuts. Section 5 then shows the results of applying these strategies to a test problem that is derived from a long-term model of the Brazilian electricity system. We make our final remarks in Section 6.

2 Stochastic Dual Dynamic Programming

To describe how SDDP works, we consider a class of stochastic linear programs that have T stages, denoted t = 1, 2, ..., T, in each of which a random right-hand-side vector $b_t(\omega_t) \in \mathbb{R}^m$ has a finite number of realizations defined by $\omega_t \in \Omega_t$. We assume that the outcomes ω_t are stage-wise independent, and that Ω_1 is a singleton, so the first-stage problem is

$$z = \min_{\substack{t \in [0, 1]{1}\\ \text{s.t.} \\ x_1 \ge 0,}} c_1^\top x_1 + \mathbb{E}[Q_2(x_1, \omega_2)]$$
(1)

where $x_1 \in \mathbb{R}^n$ is the first stage decision and $c_1 \in \mathbb{R}^n$ a cost vector, A_1 is a $m \times n$ matrix, and $b_1 \in \mathbb{R}^m$.

We denote by $Q_2(x_1, \omega_2)$ the second stage costs associated with decision x_1 and realization $\omega_2 \in \Omega_2$. The problem to be solved in the second and later stages t, given state x_{t-1} and realization ω_t , can be written as

$$Q_t(x_{t-1}, \omega_t) = \min \quad c_t^\top x_t + \mathbb{E}[Q_{t+1}(x_t, \omega_{t+1})]$$

s.t.
$$A_t x_t = b_t(\omega_t) - E_t x_{t-1}, \quad [\pi_t(\omega_t)]$$
$$x_t \ge 0,$$
 (2)

where $x_t \in \mathbb{R}^n$ is the decision in stage t, c_t its cost, and A_t and E_t denote $m \times n$ matrices. Here $\pi_t(\omega_t)$ denotes the dual variables of the constraints. In stochastic control terminology $\mathbb{E}[Q_{t+1}(x_t, \omega_{t+1})]$ represents a Bellman function. In the last stage we assume either that $\mathbb{E}[Q_{T+1}(x_T, \omega_{T+1})] = 0$, or that there is a convex polyhedral function that defines the expected future cost after stage T.

The SDDP algorithm is well known, and is described in detail in a number of papers ([5],[8]), so we give only a brief outline here. The algorithm builds a policy that is defined at stage t by a polyhedral outer approximation of $\mathbb{E}[Q_{t+1}(x_t, \omega_{t+1})]$ resulting in an approximate value function $\mathcal{Q}_t(x_{t-1}, \omega_t)$. The outer approximation is constructed using cutting planes called Benders cuts, or just *cuts*. In other words in each tth-stage problem, $\mathbb{E}[Q_{t+1}(x_t, \omega_{t+1})]$ is replaced by the variable θ_{t+1} which is constrained by the set of linear inequalities

$$\theta_{t+1} + \bar{\pi}_{t+1,k}^{\top} E_{t+1} x_t \ge \bar{g}_{t+1,k} \qquad \text{for } k = 1, 2, \dots K, \tag{3}$$

where K is the number of cuts. Here $\bar{\pi}_{t+1,k} = \mathbb{E}[\pi_{t+1}(\omega_{t+1})]$, which defines the gradient $-\bar{\pi}_{t+1,k}^{\top} E_{t+1}$ and the intercept $\bar{g}_{t+1,k}$ for cut k in stage t, where

$$\bar{g}_{t+1,k} = \mathbb{E}[\mathcal{Q}_{t+1}(x_t^k, \omega_{t+1})] + \bar{\pi}_{t+1,k}^{\top} E_{t+1} x_t^k.$$

As a consequence, problem (1) is approximated by

$$z = \min \quad c_1^{\top} x_1 + \theta_2 \\ \text{s.t.} \quad A_1 x_1 = b_1, \\ \theta_2 + \bar{\pi}_{2,k}^{\top} E_2 x_1 \ge \bar{g}_{2,k}, \\ x_1 \ge 0, \theta_2 \ge 0$$
(4)

and (2) is approximated by

$$\mathcal{Q}_{t}(x_{t-1},\omega_{t}) = \min \quad c_{t}^{\top}x_{t} + \theta_{t+1} \\
\text{s.t.} \quad A_{t}x_{t} = b_{t}(\omega_{t}) - E_{t}x_{t-1}, \qquad [\pi_{t}(\omega_{t})] \\
\theta_{t+1} + \bar{\pi}_{t+1,k}^{\top}E_{t+1}x_{t} \ge \bar{g}_{t+1,k}, \\
x_{t} \ge 0, \theta_{t+1} \ge 0.$$
(5)

The SDDP algorithm performs a sequence of major iterations each consisting of a *forward pass* and a *backward pass* to build an approximately optimal policy, defined by the cuts. In each forward pass, a set of N scenarios is sampled from the scenario tree and decisions are taken for each node of those N scenarios, starting in the first stage and moving forward up to the last stage. In each stage, the observed values of the state variables x_t , and the costs of each node in all scenarios are saved.

At the end of the forward pass, a convergence criterion is tested, and if it is satisfied then the algorithm is stopped, otherwise it starts the backward pass, which is defined below. In the standard version of SDDP [5], the convergence test is satisfied when z, the lower bound on the expected cost at the first stage (called the *Lower Bound*), is statistically close to an estimate of the expected total operation cost (called the *Upper Bound*) obtained by averaging the cost of the policy defined by the cuts when applied to the N sampled scenarios. In this simulation the total operation cost for each scenario is the sum of the present cost $(c_t^{\top} x_t)$ over all stages t.

For completeness we have included this test in our mathematical description of SDDP, but in our computational experiments we adopt a different approach in which the algorithm is terminated after a fixed number of iterations. This has proved to be more reliable than the standard test for the problems we are solving (see [4], [8] for a discussion of the drawbacks of the standard convergence criterion).

In the backward pass SDDP amends the current policy by adding N cuts to each stage problem, starting at the last stage and working backwards to the first. In each stage t we solve the next stage problems for all possible realizations (Ω_{t+1}). The values of the objective functions and dual variables at optimality are taken as expectations over all realizations to define a cut that is added to all problems at stage t.

In summary, the SDDP algorithm performs the following three steps repeatedly until the convergence criterion is satisfied.

1. Sampling

Sample scenarios s = 1, ..., N;

2. Forward Pass

For t = 1 solve (4) and save x_1 and z;

For t = 2, ..., T and s = 1, ..., N,

Solve (5), where ω_t is defined by s, and save $x_t(s)$ and $\mathcal{Q}_t(x_{t-1}, \omega_t)$.

3. Standard Convergence Test (at 90% confidence level)

Calculate the Upper Bound: $z_u = c_1^{\mathsf{T}} x_1 + \frac{1}{N} \sum_{s=1}^N \sum_{t=2}^T c_t^{\mathsf{T}} x_t(s)$ $\sigma_u = \sqrt{\frac{1}{N} \sum_{s=1}^N \left(c_1^{\mathsf{T}} x_1 + \sum_{t=2}^T c_t^{\mathsf{T}} x_t(s) \right)^2 - z_u^2}.$ Calculate the Lemma Bound: $z_t = z_t$

Calculate the Lower Bound: $z_l = z$; Stop if

$$z_u - \frac{1.96}{\sqrt{N}}\sigma_u < z_l < z_u + \frac{1.96}{\sqrt{N}}\sigma_u,$$

otherwise go to the Backward Pass.

4. Backward Pass

For t = T, ..., 2, and s = 1, ..., N,

For $\omega_t \in \Omega_t$, solve (5) using $x_{t-1}(s)$ and save $\pi_t(\omega_t)$ and $\mathcal{Q}_t(x_{t-1}, \omega_t)$;

Calculate a cut (3) and add it to all subproblems in stage t-1. Go to step 1.

3 Tree Traversing Strategies

In the classical description [5] of SDDP, N scenarios are visited at the same time in the forward pass and then a backward pass is performed to build N cuts for each stage. Philpott and Guan [7] describe a variation of this method in which N = 1, that appears to perform well on problems when the algorithm performs only a small number of iterations before terminating. In this tree-traversing strategy we visit only one scenario at a time in the forward pass and then a backward pass is performed to build one cut at each stage. This is described formally in the following procedure.

1. Sampling

Sample scenarios s = 1, ..., N;

2. Visiting Scenarios

For s = 1, ..., N, For t = 1 solve (4) and save $x_1(s)$ and z(s); Forward Pass For t = 2, ..., T, Solve (5), where ω_t is defined by s, and save $x_t(s)$ and $\mathcal{Q}_t(x_{t-1}, \omega_t)$. Backward Pass For t = T, ..., 2, For $\omega_t \in \Omega_t$, solve (5) using $x_{t-1}(s)$ and save $\pi_t(\omega_t)$ and $\mathcal{Q}_t(x_{t-1}, \omega_t)$; Calculate a cut (3) and add it to all subproblems in stage t - 1.

3. Convergence Test

Calculate the Upper Bound: $z_u = \frac{1}{N} \sum_{s=1}^{N} \sum_{t=1}^{T} c_t^{\top} x_t(s)$. Calculate the Lower Bound: $z_l = z(N)$; Stop if z_l and z_u are sufficiently close; otherwise go to 1.

This strategy performs well in the early iterations of the algorithm, where a small number of cuts in the first few scenarios leads to a reasonable approximation of the Bellman function. In contrast, computing N cuts in each early iteration might be wasting computational effort on parts of the state space that will not be visited with high probability by an optimal policy or on states that have already been visited.

Observe that the convergence test differs from the classical SDDP convergence test. The value $\sum_{t=1}^{T} c_t^{\top} x_t(s)$ is an unbiased estimate of the value of the approximate policy defined by the cuts obtained so far, and so its expectation is an upper bound on the expected cost C of the optimal policy.

Thus

$$\mathbb{E}[z_u] = \mathbb{E}\left[\frac{1}{N}\sum_{s=1}^N\sum_{t=1}^T c_t^\top x_t(s)\right]$$
$$= \frac{1}{N}\sum_{s=1}^N \mathbb{E}[\sum_{t=1}^T c_t^\top x_t(s)]$$
$$\geq \frac{1}{N}\sum_{s=1}^N C$$
$$= C.$$

However $\sum_{t=1}^{T} c_t^{\top} x_t(s)$ is obtained using cuts computed from scenarios $1, 2, \ldots, s-1$, and so it is not independent of $\sum_{t=1}^{T} c_t^{\top} x_t(r)$, $r = 1, 2, \ldots, s-1$. The consequence is that the variance of the estimator z_u cannot be proved to decrease linearly with N. Furthermore, we cannot invoke a central limit theorem to obtain a confidence interval for C. Of course, any candidate policy can be simulated with re-sampled scenarios to give a confidence interval of its expected cost, but it is not possible for this interval estimation to occur during the course of the algorithm. This makes it difficult to reliably terminate the method, and in practice we typically run it for a pre-determined number of iterations.

It is also important to point out that using one scenario at a time will become less advantageous if we exploit parallel processing. Here in our case, one needs to visit at least the number of scenarios equal to the number of processors as each processor will handle one scenario at a time.

An alternative approach to the one scenario per pass strategy is to increment the number of scenarios visited in each pass as we proceed through the iterations. A version of this *scenario incrementation* strategy was discussed by [9]. In our implementation, we proceed in batches of N scenarios at a time. In the first batch we use one scenario in each of N forward passes, then in the second batch we use two scenarios in each of N/2 forward passes, and so on. The number of scenarios per pass is determined by a parameter k, which we choose to be a factor of N. Thus for N = 200, $k \in \mathcal{K} = \{1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200\}.$

In summary, the algorithm is as below.

1. k = 1;

2. Sampling

Sample scenarios s = 1, ..., N;

3. Visiting Scenarios

For i = 1, ..., N/k;

Forward Pass

For t = 1 solve (4) and save x_1 and z;

For t = 2, ..., T, j = 1, ..., k, s = (i - 1)k + j;

Solve (5), where ω_t is defined by s, and save $x_t(j)$

and $\mathcal{Q}_t(x_{t-1}, \omega_t)$.

Backward Pass

For
$$t = T, ..., 2, j = 1, ..., k, s = (i - 1)k + j;$$

For $\omega_t \in \Omega_t$, solve (5) using $x_{t-1}(j)$ and save $\pi_t(\omega_t)$

and $\mathcal{Q}_t(x_{t-1}, \omega_t);$

Calculate a cut (3) and add it to each subproblem at stage t-1.

4. Convergence Test (at 90% confidence level) applied only when k = N.

Calculate the Upper Bound: $z_u = c_1^\top x_1 + \frac{1}{N} \sum_{j=1}^N \sum_{t=2}^T c_t^\top x_t(j)$ $\sigma_u = \sqrt{\frac{1}{N} \sum_{j=1}^N \left(c_1^\top x_1 + \sum_{t=2}^T c_t^\top x_t(j)\right)^2 - z_u^2}.$

Calculate the Lower Bound: $z_l = z;$

Stop if

$$z_u - \frac{1.96}{\sqrt{N}}\sigma_u < z_l < z_u + \frac{1.96}{\sqrt{N}}\sigma_u,$$

otherwise (or if test has not been applied) set k to be the next highest integer in

 \mathcal{K} and go to 3.

Scenario incrementation has some advantages over the one scenario per pass approach. First of all it admits a convergence test, because the forward pass at iterations where k is sufficiently large gives k independent samples of operation cost that can be used to compute a confidence interval. (We actually perform this test only when k = N). The second advantage is that when we wish to improve a reasonably good policy, it is better to visit more scenarios than one per pass. The reason for this comes from the fact that the cuts created by all scenarios visited will be considered in each stage problem solved by the backward pass, and will thus enhance the quality of the cuts created after these solves.

4 Cut Selection

As the SDDP algorithm proceeds each stage problem involves an increasing number of cuts, not all of which are active at each solve. It makes sense to select some subset of these to include in each subproblem to make it solve faster. Since all cuts computed might eventually be useful for some sequence of states visited, we do not actually *delete* any cuts that are created, rather we *select* from a set of cut indices those cuts that are to be used at each stage. At the completion of the algorithm, all cuts that have been computed can be included and used to define the policy.

The key question is, "what cuts should be selected to be included at each iteration?" For simplicity of notation we define

$$\beta_k^{\top} = -\bar{\pi}_{t+1,k}^{\top} E_{t+1}$$
$$\alpha_k = \bar{g}_{t+1,k}$$

where the stage t is suppressed. Suppose the cuts are computed at values x^i , for i = 1, 2, ...K. We can evaluate each cut at all the values of x^i to give the table

	x^1	x^2	 x^{K}
1	$\alpha_1 + \beta_1^\top x^1$	$\alpha_1 + \beta_1^\top x^2$	 $\alpha_1 + \beta_1^\top x^K$
2	$\alpha_2 + \beta_2^\top x^1$	$\alpha_2 + \beta_2^\top x^2$	 $\alpha_2 + \beta_2^\top x^K$
:	:	:	:
Κ	$\alpha_K + \beta_K^\top x^1$	$\alpha_K + \beta_K^\top x^2$	$\alpha_K + \beta_K^\top x^K$

which simplifies to a square matrix $A = (a_{ij})$ where

$$a_{ij} = \alpha_i + \beta_i^\top x^j.$$

We now describe several methodologies for selecting cuts for a stage problem based on the values in A.

4.1 Last-cuts strategy

The last-cuts strategy selects to include in the stage problem the H cuts most recently added to A. This strategy can perform poorly, because as we

proceed we may ignore cuts that are important for the convergence of the process. In addition, the set of retained cuts may not be large enough to include all the important cuts. An improvement in this strategy has been discussed in [9] in which not only the last H cuts are selected, but they also consider a set of the last H_2 active cuts. Nevertheless in this paper we restrict attention to the first strategy, and compare it to some alternative cut selection strategies that we now describe.

4.2 Level of Dominance

Given a set of K cuts at stage t we say that cut l is *dominated* if for every x that is feasible for the stage problem there is at least one $k \neq l$ with

$$\alpha_l + \beta_l^\top x \le \alpha_k + \beta_k^\top x$$

This is illustrated in Figure 1. In each stage problem it makes sense to include only those cuts that are not dominated. However, it is too expensive computationally to determine this exactly at each iteration, so we resort to heuristics.

Figure 1: The lower dashed cut is dominated. The remaining cuts are computed at points x^1 , x^2 (upper dashed), and x^3 . The upper dashed cut is not dominated by the solid cuts but would not be included in a Level 1 dominance selection as it is not the highest cut at x^1 , x^2 or x^3 .

The simplest of these is called *Level 1 Dominance* (or just *Level 1*). For every j, we compute $i(j) = \arg \max_i \{a_{ij}\}$, and select every row i of A for which $i \in \{i(j) \mid j = 1, 2, ..., K\}$. This chooses to ignore every cut that is not the highest cut at some x^j . This strategy can be implemented very easily by storing a vector v with jth component $v(j) = \max_i \{a_{ij}\}$, and a vector iwith jth component i(j), and updating these every time a cut is added to the problem. If for any j = 1, 2, ..., K,

$$\alpha_{K+1} + \beta_{K+1}^\top x^j > v(j)$$

then we set i(j) = K + 1, and $v(j) = \alpha_{K+1} + \beta_{K+1}^{\top} x^j$. Then we compute

$$v(K+1) = \max_{i} \{a_{i,K+1}\}$$

and

$$i(K+1) = \arg\max_{i} \{a_{i,K+1}\}$$

The list of cuts to retain in the stage problem is then determined by indices in i(j) which can be selected in any call to the linear programming solver.

The Level 1 strategy will not select cuts that are not binding at some x^j , but such a cut might be binding at some other feasible point (see Figure 1). Thus it might make sense to keep a list of the best and second best cuts for each j. If one kept the H highest cuts at each point x^j then we call this the Level H Dominance strategy. This can be implemented with a simple modification of the Level 1 algorithm that stores vectors v^h , $h = 1, 2, \ldots, H$, and i^h , $h = 1, 2, \ldots, H$, with $v^h(j)$ giving the hth largest value of the jth column of A, and $i^h(j)$ giving the index i that yields this value.

4.3 Dynamic cut selection

A promising approach to cut selection is to enable the algorithm to select active cuts automatically from the list of cuts that have already been generated. We call this *dynamic cut selection* (DCS). In DCS the SDDP solution strategy is exactly the same, but instead of using all cuts at once we add the cuts iteratively as needed. This means that every time we solve (5) and for the given decision x_t we evaluate $v(j) = \alpha_j + \beta_j^\top x_t$ for j = 1, 2, ..., K. If the cut $j = \arg \max_j \{v(j)\}$ has not been added to (5) yet, then we add it to the problem and solve it again.

DCS has several advantages. First of all, in DCS we consider the complete set of computed cuts, whereas in the other proposed methods we always consider a subset. This is possible because in DCS we are always adding the necessary cuts iteratively to obtain the optimal solution for a particular linear programming problem.

The second advantage comes from retaining the set of cuts for the first subproblem solved at stage t to be used in all other subproblems at this stage.

This form of warm starting identifies a broad set of cuts to include that are likely to be important in all subproblems at a given stage.

The following algorithm describes how the DCS is included in the SDDP algorithm when scenario incrementation is used.

1. k = 1;

2. Sampling

Sample scenarios s = 1, ..., N;

Remove all cuts from the stage problems.

3. Visiting Scenarios

For i = 1, ..., (N/k), For t = 1 solve (4) and save x_1 and z; Forward Pass For t = 2, ..., T and j = 1, ..., k, s = (i-1)k + j;New cut just added = true; While (New cut just added) Solve (5), where ω_t is defined by s, and save $x_t(s)$ and $\mathcal{Q}_t(x_{t-1}, \omega_t)$. If cut $j = \arg \max_{j} \{ \alpha_{j} + \beta_{j}^{\top} x_{t}(s) \}$ not in (5), add cut j to (5). **Backward** Pass For t = T, ..., 2 and j = 1, ..., k, s = (i-1)k + j;New cut just added = true; While (New cut just added) For $\omega_t \in \Omega_t$, solve (5) using $x_{t-1}(s)$ and save $\pi_t(\omega_t)$ and $\mathcal{Q}_t(x_{t-1}, \omega_t)$; If cut $j = \arg \max_{i} \{ \alpha_{i} + \beta_{i}^{\top} x_{t}(s) \}$ not in (5), add cut j to (5). Calculate a cut (3) and save it to stage t - 1.

4. Convergence Test (at 90% confidence level) applied only when k = N

Calculate the Upper Bound:
$$z_u = c_1^\top x_1 + \frac{1}{k} \sum_{j=1}^k \sum_{t=2}^T c_t^\top x_t(j)$$

$$\sigma_u = \sqrt{\frac{1}{k} \sum_{j=1}^k \left(c_1^\top x_1 + \sum_{t=2}^T c_t^\top x_t(j)\right)^2 - z_u^2}$$

Calculate the Lower Bound: $z_l = z$; Stop if

$$z_u - \frac{1.96}{\sqrt{N}}\sigma_u < z_l < z_u + \frac{1.96}{\sqrt{N}}\sigma_u,$$

otherwise (or if test has not been applied) set k to be the next highest integer in

 \mathcal{K} and go to 2.

5 Computational Results

The computational testing of the tuning strategies discussed in this paper was carried out on the model of the Brazilian electricity system described in [1]. The Brazilian power system comprises 158 Hydro power plants and 151 Thermal Power Plants. The model we consider has a 10-year horizon with monthly time stages, giving a total of 120 stages. The hydro power plants are aggregated to form four energy equivalent reservoirs, as discussed in [1]. The uncertainty in this problem is assumed to be only in the inflows, which we assume to be stage-wise independent with a known lognormal probability distribution function. It is important to point out that each month of the year has a specific lognormal distribution, i.e. there are a total of 12 distributions for each energy equivalent reservoir. It is important also to mention that results are reported only for this single case. The efficiency of tuning strategies will vary from problem to problem, but we expect a similar pattern of results should emerge from experiments on hydrothermal scheduling problems of commensurate size.

We use Monte Carlo sampling to select a finite set of 20 equally likely inflow outcomes at each stage. This amounts to a sample-average approximation (SAA) problem with 119²⁰ scenarios. The scenarios for the SDDP algorithm are sampled within the SAA problem by means of Monte Carlo sampling. Since our intention is to identify the best algorithm for solving the SAA problem, we also estimate the value of any candidate policy by sampling from the SAA problem rather than the underlying lognormal distribution. All results were obtained in a 2-processor Intel Xeon X5690, with 32 GB RAM 1333MHz, high-performance 300 GB SAS 15000 rpm disk and Windows Server 2008 R2 Standard Edition, using 10 parallel processes. To solve each stage problem we use Gurobi 4.61.

In this paper we compare 21 cases, which are outlined in Table 1. We will first give the results of each cut selection strategy for the three tree traversing strategies, and then we will compare the three best cases. In all cases we will compute 10,000 cuts and we will simulate over 5,000 scenarios sampled within the scenario tree. The simulation was used to compute the

	One Scenario	Scenario Incrementation	Traditional
600 Cuts	1	8	15
1000 Cuts	2	9	16
Level 1	3	10	17
Level 2	4	11	18
Level 3	5	12	19
DCS	6	13	20
No Selection	7	14	21

Table 1: Cases to be considered

expected operation cost over 5,000 scenarios, which will give us a better approximation to the operation cost of each policy than an upper bound estimated with only 200 scenarios. The simulation is performed 11 times for each case to give an approximation of the operation cost after computing 200, 400, 600, 800, 1000, 2000, 3000, 4000, 6000, 8000 and 10000 cuts. Due to the parallel processing implementation, it is important to point out that, in the one-scenario-per-pass cases, we have 10 scenarios, one for each processor.

To begin with, we discuss cut selection strategies in the one-scenario-perpass cases 1-7. These were implemented and run until 10,000 cuts had been computed. Table 2 and Table 3 present the values of the Lower Bound and the expected operation cost with increasing numbers of iterations.

Observe that after 10,000 cuts the strategy of keeping the most recent 600 cuts gives the smallest Lower Bound and the most expensive policy on average. The strategy of keeping the most recent 1000 cuts was better but still worse than the more sophisticated cut selection strategies. One important aspect to point out from Table 3 is the fact that after 8,000 cuts per stage had been computed, the cases with the dominance levels, dynamic cut selection and no cut selection had an expected operation cost smaller than the 600 Cuts case when it had computed 10,000 cuts per stage.

From the perspective of expected operation cost of the policy at termination, there is little to choose between dominance levels, dynamic cut selection and no selection. Figure 2 shows the computation time in hours (solid line)

Case	Cut Selection	4,000 Cuts	6,000 Cuts	8,000 Cuts	10,000 Cuts
1	600 Cuts	24.412	24.525	24.585	24.624
2	1000 Cuts	24.412	24.527	24.589	24.632
3	Level 1	24.413	24.527	24.591	24.634
4	Level 2	24.415	24.528	24.591	24.635
5	Level 3	24.415	24.529	24.592	24.635
6	DCS	24.414	24.528	24.591	24.635
7	No Selection	24.412	24.527	24.591	24.634

Table 2: Lower Bound for cases with one scenario per pass (10^9 BRL).

Case	Cut Selection	4,000 Cuts	6,000 Cuts	8,000 Cuts	10,000 Cuts
1	600 Cuts	25.165	25.104	25.051	25.027
2	1000 Cuts	25.146	25.078	25.032	25.016
3	Level 1	25.136	25.062	25.014	24.995
4	Level 2	25.139	25.058	25.025	24.994
5	Level 3	25.128	25.062	25.011	24.998
6	DCS	25.134	25.061	25.027	25.001
7	No Selection	25.136	25.069	25.015	24.989

Table 3: Expected operation cost for cases with one scenario per pass (10⁹ BRL).

and the speedup (bars) of each cut selection strategy compared to the no selection case. From Figure 2, one can notice that all cut selection strategies reduce the computation time, and the best speedup is obtained when keeping only the last 600 cuts. Of the strategies that produced little degradation in solution quality, the Level 1 dominance strategy was quickest, producing a policy 11 times quicker than the no selection case.

Figure 2: Computation time for cases with 1 scenario per pass.

We now proceed to analyze cases 8-14 that use scenario incrementation. Here the SDDP algorithm starts with one scenario per pass for each of 10 processors and at the end of every iteration (after N scenarios have been visited) we increase k the number of scenarios per pass in each processor to be the next highest factor of N/(number of processes). Thus when there are 10 processes and N = 200, k is chosen from the set $\mathcal{K} = \{1, 2, 4, 5, 10, 20\}$. This gives 10, 20, 40, 50, 100, and 200 scenarios in each forward pass.

The lower bound for the scenario incrementation case with all seven cut selection strategies is shown in Table 4, in which we find that the lower bound was very similar for all cut-selection strategies throughout the iterative process. It is possible to see that from 6,000 to 10,000 cuts, the lower bound from the 600 Cuts strategy was a little bit smaller than all other cases.

Table 5 presents the expected operation cost for the scenario incrementation case, where one can observe that the expected operation cost is very similar for all cut selection strategies, but the policies with 600 and 1000 Cuts are more expensive than the others.

Based on solution quality alone, it is hard to discriminate between Level

Case	Cut Selection	4,000 Cuts	6,000 Cuts	8,000 Cuts	10,000 Cuts
8	600 Cuts	24.584	24.637	24.661	24.678
9	1000 Cuts	24.590	24.644	24.674	24.695
10	Level 1	24.582	24.643	24.677	24.700
11	Level 2	24.585	24.644	24.677	24.700
12	Level 3	24.590	24.644	24.677	24.700
13	DCS	24.585	24.644	24.678	24.701
14	No Selection	24.593	24.645	24.678	24.701

Table 4: Lower Bound for cases with scenario incrementation (10^9 BRL).

Case	Cut Selection	4,000 Cuts	6,000 Cuts	8,000 Cuts	10,000 Cuts
8	600 Cuts	25.125	25.053	25.012	24.999
9	1000 Cuts	25.112	25.050	25.007	24.991
10	Level 1	25.085	25.025	24.990	24.969
11	Level 2	25.092	25.032	25.001	24.977
12	Level 3	25.087	25.024	24.990	24.972
13	DCS	25.083	25.031	24.993	24.974
14	No Selection	25.077	25.030	24.992	24.976

Table 5: Expected operation cost for cases with scenario incrementation (10⁹ BRL).

Figure 3: Computation time for cases with scenario incrementation.

Case	Cut Selection	4,000 Cuts	6,000 Cuts	8,000 Cuts	10,000 Cuts
15	600 Cuts	24.557	24.624	24.654	24.673
16	1000 Cuts	24.535	24.632	24.668	24.691
17	Level 1	24.551	24.630	24.669	24.694
18	Level 2	24.547	24.632	24.670	24.695
19	Level 3	24.550	24.633	24.671	24.696
20	DCS	24.544	24.628	24.669	24.695
21	No Selection	24.545	24.635	24.673	24.697

Table 6: Lower Bound for cases with traditional tree traversing (10^9 BRL) .

1 dominance, Level 2 dominance and dynamic cut selection. Figure 3 shows that Level 1 dominance was slightly quicker than the competing methods.

The last tree-traversing strategy we study is the traditional SDDP algorithm in which all scenarios are visited in a single pass. In these cases (15-21) we have 20 scenarios per pass for each process. Table 6 shows the Lower Bound over the course of the algorithm. Here one can observe at the end of the iterative process that all values are very similar, except for the Lower Bound for 600 Cuts that is smaller.

The expected operation cost is shown in Table 7.

The computational speedups for cut selection strategies for traditional SDDP are shown in Figure 4. As in the previous analysis, the Level 1 dominance strategy provides a good policy with the best speedup.

As already discussed in [2] and [9], the traditional tree traversing strategy

Case	Cut Selection	4,000 Cuts	6,000 Cuts	8,000 Cuts	10,000 Cuts
15	600 Cuts	25.119	25.057	25.016	24.996
16	1000 Cuts	25.140	25.066	25.007	24.990
17	Level 1	25.126	25.042	24.999	24.973
18	Level 2	25.124	25.037	24.996	24.976
19	Level 3	25.144	25.034	24.998	24.975
20	DCS	25.125	25.049	24.991	24.979
21	No Selection	25.112	25.036	24.999	24.972

Table 7: Expected operation cost for cases with traditional tree traversing (10⁹ BRL).

Figure 4: Computation time for cases with traditional tree traversing.

Case	200 Cuts	400 Cuts	600 Cuts	 6,000 Cuts	8,000 Cuts	10,000 Cuts
7	21.944	22.864	23.254	 24.527	24.591	24.634
14	21.944	22.912	23.571	 24.645	24.678	24.701
21	8.532	20.133	20.143	 24.635	24.673	24.697

Table 8: Lower Bound for tree traversing strategies (10^9 BRL) .

has a poorer performance in the early iterations when compared to the case in which we start our problem with one scenario per pass. This is because in early iterations the current policy tends to be myopic, so when you visit many scenarios in one single pass this policy is likely to make similar decisions in several scenarios, adding a number of cuts that are closely related. In contrast, for the one scenario-per-pass algorithm, every scenario visited will use a Bellman function approximation updated in all the previous scenarios. For example, in the first iteration the traditional tree traversing performs a forward pass with no cuts so all water is used in all 200 scenarios, whilst in the one-scenario-per-pass case only the first scenario performs a forward pass with no cuts because from the second scenarios onwards there will be cuts available from the previous scenarios. This improves the approximation of the Bellman function more rapidly in the early iterations.

However this advantage does not persist if the algorithm runs for many iterations. Cases 7, 14, and 21 are compared in tables 8 and 9. Table 8 shows that without cut selection, the traditional approach (case 21) gives better results with 10000 cuts than one scenario per pass, but comparable results to scenario incrementation (case 14). The reason for this behaviour is a clear benefit of visiting more than one scenario per pass as we enhance the quality of our policy. This is due to the fact that when we have policies of better quality, the forward pass provides different states, and in the backward pass all scenarios will receive all 200 cuts at once. As a consequence, when creating a cut for the previous stages all scenarios will have access to all 200 new cuts created in the next stage at the same iteration. On the other hand, when using one scenario per pass in the backward pass the first scenario will add just one cut per stage and, as a result, this scenario will not take into account the other 199 scenarios. This is also the reason for the extremely good performance of scenario incrementation, which benefits in the first few iterations from not visiting too many scenarios, but when we have a better policy, visits all 200 scenarios at once.

The plots in figures 2, 3 and 4 show that all three methods without cut selection take about 12 hours to compute 10,000 cuts (with traditional tree traversal slightly less). This is about ten times slower than these methods

Case	200 Cuts	400 Cuts	600 Cuts	 6,000 Cuts	8,000 Cuts	10,000 Cuts
7	28.795	26.847	26.308	 25.069	25.015	24.989
14	28.795	26.913	26.639	 25.030	24.992	24.976
21	69.181	32.092	28.868	 25.036	24.999	24.972

Table 9: Expected operation cost for tree traversing strategies (10^9 BRL).

Case	200 Cuts	400 Cuts	600 Cuts	 6,000 Cuts	8,000 Cuts	10,000 Cuts
3	21.733	22.828	23.264	 24.527	24.591	24.634
10	21.733	22.959	23.454	 24.643	24.677	24.700
17	8.532	20.587	20.597	 24.630	24.669	24.694

Table 10: Lower Bound for tree traversing strategies with Level 1 cut selection (10^9 BRL) .

take with a Level 1 dominance cut selection strategy.

We conclude by examining the Level 1 dominance cut selection strategy in a bit more detail. As shown in Table 10, one can see that the traditional tree traversing strategy eventually overtakes the strategy in which we keep one scenario per pass throughout the iterative process.

In Table 11 we compare the estimated expected costs of the policies. The least expensive policy is yielded by scenario incrementation, athough after 10000 cuts the traditional tree-traversing strategy and scenario incrementation achieved a very similar lower bound and expected operation cost. This indicates that we are very close to the optimal policy in both cases.

Finally, Figure 5 presents the computation time for each tree-traversing strategy with the Level 1 dominance cut selection strategy, in which one can see that the computation time is very similar. The scenario incrementation and traditional tree-traversing strategies are about 10% faster since the cut selection algorithm is run less often.

Case	200 Cuts	400 Cuts	600 Cuts	 6,000 Cuts	8,000 Cuts	10,000 Cuts
3	29.119	26.799	26.280	 25.062	25.014	24.995
10	29.119	26.726	26.240	 25.025	24.990	24.969
17	69.181	32.012	28.206	 25.042	24.999	24.973

Table 11: Expected operation cost for tree traversing strategies with Level 1 cut selection (10^9 BRL).

Figure 5: Computational time for tree traversing strategies.

6 Conclusions

The experimental results in this paper show that cut selection strategies do not have a significant impact on the policy in terms of lower bound and expected operation cost at the end of the iterative process, but they may reduce the computation time by an order of magnitude. The best combination of tuning strategies, at least to solve this problem instance, is to start the process with one scenario per pass, increment the number of scenarios throughout the iteration, and use a Level 1 dominance cut selection strategy. Although the traditional tree traversing strategy was quicker than scenario incrementation and produces a similar policy after 10,000 cuts, it has the drawback of being worse if the algorithm is terminated early.

References

- [1] V.L. de Matos and E.C. Finardi. A computational study of a stochastic optimization model for long term hydrothermal scheduling. *Int J Electr Power Energ Syst*, In Press, Corrected Proof, 2012.
- [2] V.L. de Matos, A.B. Philpott, E.C. Finardi, and Z. Guan. Solving longterm hydrothermal scheduling problem. In 17th Power Systems Computation Conference 2011, volume 1, pages 1355–1362, 2011.

- [3] V. Guigues and W. Romisch. Sampling-based decomposition methods for risk-averse multistage stochastic programs, 2010. Available at http://www.optimization-online.org/DB_HTML/2010/10/2763.html. Date of access: 04/July/2012.
- [4] T. Homem-de Mello, V.L. de Matos, and E.C. Finardi. Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling. *Energy Systems*, 2:1– 31, 2011.
- [5] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to energy planning. *Mathematical Programming*, 52:359–375, 1991.
- [6] A.B. Philpott and V.L. de Matos. Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. *European Journal of Operational Research*, 218(2):470 – 483, 2012.
- [7] A.B. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming and other methods. *Operations Research Letters*, 36:450–455, 2008.
- [8] A. Shapiro. Analysis of stochastic dual dynamic programming method. European Journal of Operational Research, 209(1):63 – 72, 2011.
- [9] A. Shapiro, W. Tekaya, J.P. da Costa, and M.P. Soares. Risk neutral and risk averse stochastic dual dynamic programming method. Available at http://www.optimization-online.org/DB_FILE/2012/01/3307.pdf. Date of access: 04/July/2012.