
Improving the Performance of Stochastic Dual
Dynamic Programming

Vitor L. de Matos ∗ and Andy B. Philpott † and Erlon C. Finardi ‡

July 10, 2012

Abstract

This paper is concerned with tuning the Stochastic Dual Dynamic
Programming algorithm to make it more computationally efficient.
We report the results of some computational experiments on a large-
scale hydrothermal scheduling model developed for Brazil. We find
that the best improvements in computation time are obtained from an
implementation that increases the number of scenarios in the forward
pass with each iteration and selects cuts to be included in the stage
problems in each iteration. This gives an order of magnitude decrease
in computation time with little change in solution quality.

Key words: stochastic programming; stochastic dual dynamic programming;
cut selection; hydrothermal scheduling.

1 Introduction

The Stochastic Dual Dynamic Programming (SDDP) algorithm of Pereira
and Pinto [5] is a well-known technique for attacking multi-stage stochastic
linear programs that have a stage-wise independence property that makes
them amenable to dynamic programming. This method approximates the
future cost function of dynamic programming using a piecewise linear outer

∗Plan4 Engenharia, Brazil, vitor@plan4.com.br
†Electric Power Optimization Centre, University of Auckland, New Zealand,

a.philpott@auckland.ac.nz
‡Laboratório de Planejamento de Sistemas de Energia Elétrica, Universidade Federal

de Santa Catarina, Brazil, erlon.finardi@ufsc.br

1



approximation, defined by cutting planes computed by solving linear pro-
grams. This helps mitigate the curse of dimensionality that arises from dis-
cretizing the state variables. The intractability arising from a branching
scenario tree is avoided by essentially assuming stage-wise independent un-
certainty. This allows cuts to be shared between different states, effectively
collapsing the scenario tree. Although it was developed over twenty years
ago, and has been cited over the years in many applied papers, SDDP has
received some recent attention in the mathematical programming literature
(cite [3],[4],[6],[7],[8],[9]). These papers explore the mathematical properties
of this method, in some cases extending it to deal with risk-averse objective
functions.

This paper is concerned with some of the implementation details of SDDP
algorithms. By carrying out some computational tests on a real application,
we attempt to draw some conclusions about how the basic method might be
improved by tuning it to build a near optimal policy in the shortest compu-
tation time. There are basically two techniques for tuning the algorithm that
we shall investigate. The first concerns how one should visit the scenarios
in the SDDP algorithm. The classical version of SDDP [5] samples a fixed
number of scenarios for each “forward pass”. We compare this with alterna-
tive strategies that traverses one scenario at a time [7], as well as in the one
that increases the number of scenarios per pass as the algorithm proceeds
(as discussed in [9]).

In tandem with scenario selection, we investigate several strategies for
selecting cuts to include in the linear programming problems that are solved
at each stage. This can lead to a dramatic decrease in computation time
with little degradation in the performance of the policies obtained.

The paper is laid out as follows. In Section 2 we recall the basic algorithm
for SDDP. Section 3 describes the three different tree-traversal strategies we
shall test and Section 4 describes methods we use for selecting cuts. Section
5 then shows the results of applying these strategies to a test problem that is
derived from a long-term model of the Brazilian electricity system. We make
our final remarks in Section 6.

2 Stochastic Dual Dynamic Programming

To describe how SDDP works, we consider a class of stochastic linear pro-
grams that have T stages, denoted t = 1, 2, . . . , T , in each of which a random
right-hand-side vector bt(ωt) ∈ Rm has a finite number of realizations defined
by ωt ∈ Ωt. We assume that the outcomes ωt are stage-wise independent,

2



and that Ω1 is a singleton, so the first-stage problem is

z = min c>1 x1 + E[Q2(x1, ω2)]
s.t. A1x1 = b1,

x1 ≥ 0,
(1)

where x1 ∈ Rn is the first stage decision and c1 ∈ Rn a cost vector, A1 is a
m× n matrix, and b1 ∈ Rm.

We denote by Q2(x1, ω2) the second stage costs associated with decision
x1 and realization ω2 ∈ Ω2. The problem to be solved in the second and later
stages t, given state xt−1 and realization ωt, can be written as

Qt(xt−1, ωt) = min c>t xt + E[Qt+1(xt, ωt+1)]
s.t. Atxt = bt(ωt)− Etxt−1, [πt(ωt)]

xt ≥ 0,
(2)

where xt ∈ Rn is the decision in stage t, ct its cost, and At and Et denote
m×n matrices. Here πt(ωt) denotes the dual variables of the constraints. In
stochastic control terminology E[Qt+1(xt, ωt+1)] represents a Bellman func-
tion. In the last stage we assume either that E[QT+1(xT , ωT+1)] = 0, or that
there is a convex polyhedral function that defines the expected future cost
after stage T .

The SDDP algorithm is well known, and is described in detail in a num-
ber of papers ([5],[8]), so we give only a brief outline here. The algorithm
builds a policy that is defined at stage t by a polyhedral outer approximation
of E[Qt+1(xt, ωt+1)] resulting in an approximate value function Qt(xt−1, ωt).
The outer approximation is constructed using cutting planes called Benders
cuts, or just cuts. In other words in each tth-stage problem, E[Qt+1(xt, ωt+1)]
is replaced by the variable θt+1 which is constrained by the set of linear in-
equalities

θt+1 + π̄>t+1,kEt+1xt ≥ ḡt+1,k for k = 1, 2, ...K, (3)

where K is the number of cuts. Here π̄t+1,k = E[πt+1(ωt+1)], which defines
the gradient −π̄>t+1,kEt+1 and the intercept ḡt+1,k for cut k in stage t, where

ḡt+1,k = E[Qt+1(x
k
t , ωt+1)] + π̄>t+1,kEt+1x

k
t .

As a consequence, problem (1) is approximated by

z = min c>1 x1 + θ2
s.t. A1x1 = b1,

θ2 + π̄>2,kE2x1 ≥ ḡ2,k,
x1 ≥ 0, θ2 ≥ 0

(4)

3



and (2) is approximated by

Qt(xt−1, ωt) = min c>t xt + θt+1

s.t. Atxt = bt(ωt)− Etxt−1, [πt(ωt)]
θt+1 + π̄>t+1,kEt+1xt ≥ ḡt+1,k,
xt ≥ 0, θt+1 ≥ 0.

(5)

The SDDP algorithm performs a sequence of major iterations each con-
sisting of a forward pass and a backward pass to build an approximately
optimal policy, defined by the cuts. In each forward pass, a set of N scenar-
ios is sampled from the scenario tree and decisions are taken for each node of
those N scenarios, starting in the first stage and moving forward up to the
last stage. In each stage, the observed values of the state variables xt, and
the costs of each node in all scenarios are saved.

At the end of the forward pass, a convergence criterion is tested, and if it is
satisfied then the algorithm is stopped, otherwise it starts the backward pass,
which is defined below. In the standard version of SDDP [5], the convergence
test is satisfied when z, the lower bound on the expected cost at the first stage
(called the Lower Bound), is statistically close to an estimate of the expected
total operation cost (called the Upper Bound) obtained by averaging the cost
of the policy defined by the cuts when applied to the N sampled scenarios.
In this simulation the total operation cost for each scenario is the sum of the
present cost (c>t xt) over all stages t.

For completeness we have included this test in our mathematical descrip-
tion of SDDP, but in our computational experiments we adopt a different
approach in which the algorithm is terminated after a fixed number of iter-
ations. This has proved to be more reliable than the standard test for the
problems we are solving (see [4], [8] for a discussion of the drawbacks of the
standard convergence criterion).

In the backward pass SDDP amends the current policy by adding N cuts
to each stage problem, starting at the last stage and working backwards to
the first. In each stage t we solve the next stage problems for all possible
realizations (Ωt+1). The values of the objective functions and dual variables
at optimality are taken as expectations over all realizations to define a cut
that is added to all problems at stage t.

In summary, the SDDP algorithm performs the following three steps re-
peatedly until the convergence criterion is satisfied.

1. Sampling

Sample scenarios s = 1, ..., N ;

2. Forward Pass

4



For t = 1 solve (4) and save x1 and z;

For t = 2, ..., T and s = 1, ..., N ,

Solve (5), where ωt is defined by s, and save xt(s) andQt(xt−1, ωt).

3. Standard Convergence Test (at 90% confidence level)

Calculate the Upper Bound: zu = c>1 x1 + 1
N

N∑
s=1

T∑
t=2

c>t xt(s)

σu =

√
1
N

N∑
s=1

(
c>1 x1 +

∑T
t=2 c

>
t xt(s)

)2
− z2u.

Calculate the Lower Bound: zl = z;

Stop if

zu − 1.96√
N
σu < zl < zu + 1.96√

N
σu,

otherwise go to the Backward Pass.

4. Backward Pass

For t = T, ..., 2, and s = 1, ..., N ,

For ωt ∈ Ωt, solve (5) using xt−1(s) and save πt(ωt) and
Qt(xt−1, ωt);

Calculate a cut (3) and add it to all subproblems in stage t−1.

Go to step 1.

3 Tree Traversing Strategies

In the classical description [5] of SDDP, N scenarios are visited at the same
time in the forward pass and then a backward pass is performed to build
N cuts for each stage. Philpott and Guan [7] describe a variation of this
method in which N = 1, that appears to perform well on problems when
the algorithm performs only a small number of iterations before terminating.
In this tree-traversing strategy we visit only one scenario at a time in the
forward pass and then a backward pass is performed to build one cut at each
stage. This is described formally in the following procedure.

1. Sampling

Sample scenarios s = 1, ..., N ;

5



2. Visiting Scenarios

For s = 1, ..., N ,

For t = 1 solve (4) and save x1(s) and z(s);

Forward Pass

For t = 2, ..., T ,

Solve (5), where ωt is defined by s, and save xt(s)
and Qt(xt−1, ωt).

Backward Pass

For t = T, ..., 2,

For ωt ∈ Ωt, solve (5) using xt−1(s) and save πt(ωt)
and Qt(xt−1, ωt);

Calculate a cut (3) and add it to all subproblems in
stage t− 1.

3. Convergence Test

Calculate the Upper Bound: zu = 1
N

N∑
s=1

T∑
t=1

c>t xt(s).

Calculate the Lower Bound: zl = z(N);

Stop if zl and zu are sufficiently close;

otherwise go to 1.

This strategy performs well in the early iterations of the algorithm, where
a small number of cuts in the first few scenarios leads to a reasonable ap-
proximation of the Bellman function. In contrast, computing N cuts in each
early iteration might be wasting computational effort on parts of the state
space that will not be visited with high probability by an optimal policy or
on states that have already been visited.

Observe that the convergence test differs from the classical SDDP con-

vergence test. The value
T∑
t=1

c>t xt(s) is an unbiased estimate of the value of

the approximate policy defined by the cuts obtained so far, and so its ex-
pectation is an upper bound on the expected cost C of the optimal policy.

6



Thus

E[zu] = E

[
1

N

N∑
s=1

T∑
t=1

c>t xt(s)

]

=
1

N

N∑
s=1

E[
T∑
t=1

c>t xt(s)]

≥ 1

N

N∑
s=1

C

= C.

However
T∑
t=1

c>t xt(s) is obtained using cuts computed from scenarios 1, 2, . . . , s−

1, and so it is not independent of
T∑
t=1

c>t xt(r), r = 1, 2, . . . , s− 1. The conse-

quence is that the variance of the estimator zu cannot be proved to decrease
linearly with N . Furthermore, we cannot invoke a central limit theorem to
obtain a confidence interval for C. Of course, any candidate policy can be
simulated with re-sampled scenarios to give a confidence interval of its ex-
pected cost, but it is not possible for this interval estimation to occur during
the course of the algorithm. This makes it difficult to reliably terminate the
method, and in practice we typically run it for a pre-determined number of
iterations.

It is also important to point out that using one scenario at a time will
become less advantageous if we exploit parallel processing. Here in our case,
one needs to visit at least the number of scenarios equal to the number of
processors as each processor will handle one scenario at a time.

An alternative approach to the one scenario per pass strategy is to in-
crement the number of scenarios visited in each pass as we proceed through
the iterations. A version of this scenario incrementation strategy was dis-
cussed by [9]. In our implementation, we proceed in batches of N scenarios
at a time. In the first batch we use one scenario in each of N forward
passes, then in the second batch we use two scenarios in each of N/2 forward
passes, and so on. The number of scenarios per pass is determined by a
parameter k, which we choose to be a factor of N . Thus for N = 200,
k ∈ K = {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200}.

In summary, the algorithm is as below.

1. k = 1;

2. Sampling

7



Sample scenarios s = 1, ..., N ;

3. Visiting Scenarios

For i = 1, ..., N/k;

Forward Pass

For t = 1 solve (4) and save x1 and z;

For t = 2, ..., T, j = 1, ..., k, s = (i− 1)k + j;

Solve (5), where ωt is defined by s, and save xt(j)
and Qt(xt−1, ωt).

Backward Pass

For t = T, ..., 2, j = 1, ..., k, s = (i− 1)k + j;

For ωt ∈ Ωt, solve (5) using xt−1(j) and save πt(ωt)
and Qt(xt−1, ωt);

Calculate a cut (3) and add it to each subproblem
at stage t− 1.

4. Convergence Test (at 90% confidence level) applied only when k = N .

Calculate the Upper Bound: zu = c>1 x1 + 1
N

N∑
j=1

T∑
t=2

c>t xt(j)

σu =

√
1
N

N∑
j=1

(
c>1 x1 +

∑T
t=2 c

>
t xt(j)

)2
− z2u.

Calculate the Lower Bound: zl = z;

Stop if

zu − 1.96√
N
σu < zl < zu + 1.96√

N
σu,

otherwise (or if test has not been applied) set k to be the next
highest integer in

K and go to 3.

Scenario incrementation has some advantages over the one scenario per
pass approach. First of all it admits a convergence test, because the forward
pass at iterations where k is sufficiently large gives k independent samples
of operation cost that can be used to compute a confidence interval. (We
actually perform this test only when k = N). The second advantage is that
when we wish to improve a reasonably good policy, it is better to visit more
scenarios than one per pass. The reason for this comes from the fact that the

8



cuts created by all scenarios visited will be considered in each stage problem
solved by the backward pass, and will thus enhance the quality of the cuts
created after these solves.

4 Cut Selection

As the SDDP algorithm proceeds each stage problem involves an increasing
number of cuts, not all of which are active at each solve. It makes sense to
select some subset of these to include in each subproblem to make it solve
faster. Since all cuts computed might eventually be useful for some sequence
of states visited, we do not actually delete any cuts that are created, rather
we select from a set of cut indices those cuts that are to be used at each
stage. At the completion of the algorithm, all cuts that have been computed
can be included and used to define the policy.

The key question is, “what cuts should be selected to be included at each
iteration?” For simplicity of notation we define

β>k = −π̄>t+1,kEt+1

αk = ḡt+1,k

where the stage t is suppressed. Suppose the cuts are computed at values xi,
for i = 1, 2, ...K. We can evaluate each cut at all the values of xi to give the
table

x1 x2 . . . xK

1 α1 + β>1 x
1 α1 + β>1 x

2 . . . α1 + β>1 x
K

2 α2 + β>2 x
1 α2 + β>2 x

2 . . . α2 + β>2 x
K

...
...

...
...

K αK + β>Kx
1 αK + β>Kx

2 αK + β>Kx
K

which simplifies to a square matrix A = (aij) where

aij = αi + β>i x
j.

We now describe several methodologies for selecting cuts for a stage problem
based on the values in A.

4.1 Last-cuts strategy

The last-cuts strategy selects to include in the stage problem the H cuts
most recently added to A. This strategy can perform poorly, because as we

9



proceed we may ignore cuts that are important for the convergence of the
process. In addition, the set of retained cuts may not be large enough to
include all the important cuts. An improvement in this strategy has been
discussed in [9] in which not only the last H cuts are selected, but they
also consider a set of the last H2 active cuts. Nevertheless in this paper we
restrict attention to the first strategy, and compare it to some alternative cut
selection strategies that we now describe.

4.2 Level of Dominance

Given a set of K cuts at stage t we say that cut l is dominated if for every
x that is feasible for the stage problem there is at least one k 6= l with

αl + β>l x ≤ αk + β>k x.

This is illustrated in Figure 1. In each stage problem it makes sense to
include only those cuts that are not dominated. However, it is too expensive
computationally to determine this exactly at each iteration, so we resort to
heuristics.

Figure 1: The lower dashed cut is dominated. The remaining cuts are com-
puted at points x1, x2 (upper dashed), and x3. The upper dashed cut is
not dominated by the solid cuts but would not be included in a Level 1
dominance selection as it is not the highest cut at x1, x2 or x3.

The simplest of these is called Level 1 Dominance (or just Level 1 ). For
every j, we compute i(j) = arg maxi{aij}, and select every row i of A for
which i ∈ {i(j) | j = 1, 2, . . . , K}. This chooses to ignore every cut that is

10



not the highest cut at some xj. This strategy can be implemented very easily
by storing a vector v with jth component v(j) = maxi{aij}, and a vector i
with jth component i(j), and updating these every time a cut is added to
the problem. If for any j = 1, 2, . . . , K,

αK+1 + β>K+1x
j > v(j)

then we set i(j) = K + 1, and v(j) = αK+1 + β>K+1x
j. Then we compute

v(K + 1) = max
i
{ai,K+1}

and
i(K + 1) = arg max

i
{ai,K+1}.

The list of cuts to retain in the stage problem is then determined by indices
in i(j) which can be selected in any call to the linear programming solver.

The Level 1 strategy will not select cuts that are not binding at some xj,
but such a cut might be binding at some other feasible point (see Figure 1).
Thus it might make sense to keep a list of the best and second best cuts for
each j. If one kept the H highest cuts at each point xj then we call this
the Level H Dominance strategy. This can be implemented with a simple
modification of the Level 1 algorithm that stores vectors vh, h = 1, 2, . . . , H,
and ih, h = 1, 2, . . . , H, with vh(j) giving the hth largest value of the jth
column of A, and ih(j) giving the index i that yields this value.

4.3 Dynamic cut selection

A promising approach to cut selection is to enable the algorithm to select
active cuts automatically from the list of cuts that have already been gener-
ated. We call this dynamic cut selection (DCS). In DCS the SDDP solution
strategy is exactly the same, but instead of using all cuts at once we add the
cuts iteratively as needed. This means that every time we solve (5) and for
the given decision xt we evaluate v(j) = αj + β>j xt for j = 1, 2, ..., K. If the
cut j = arg maxj{v(j)} has not been added to (5) yet, then we add it to the
problem and solve it again.

DCS has several advantages. First of all, in DCS we consider the complete
set of computed cuts, whereas in the other proposed methods we always
consider a subset. This is possible because in DCS we are always adding
the necessary cuts iteratively to obtain the optimal solution for a particular
linear programming problem.

The second advantage comes from retaining the set of cuts for the first
subproblem solved at stage t to be used in all other subproblems at this stage.

11



This form of warm starting identifies a broad set of cuts to include that are
likely to be important in all subproblems at a given stage.

The following algorithm describes how the DCS is included in the SDDP
algorithm when scenario incrementation is used.

1. k = 1;

2. Sampling

Sample scenarios s = 1, ..., N ;

Remove all cuts from the stage problems.

3. Visiting Scenarios

For i = 1, ..., (N/k),

For t = 1 solve (4) and save x1 and z;

Forward Pass

For t = 2, ..., T and j = 1, ..., k,

s = (i− 1)k + j;

New cut just added = true;

While (New cut just added)

Solve (5), where ωt is defined by s, and save
xt(s) and Qt(xt−1, ωt).

If cut j = arg maxj{αj + β>j xt(s)} not in (5),
add cut j to (5).

Backward Pass

For t = T, ..., 2 and j = 1, ..., k,

s = (i− 1)k + j;

New cut just added = true;

While (New cut just added)

For ωt ∈ Ωt, solve (5) using xt−1(s) and save
πt(ωt) and Qt(xt−1, ωt);

If cut j = arg maxj{αj + β>j xt(s)} not in (5),
add cut j to (5).

Calculate a cut (3) and save it to stage t− 1.

12



4. Convergence Test (at 90% confidence level) applied only when k = N

Calculate the Upper Bound: zu = c>1 x1 + 1
k

k∑
j=1

T∑
t=2

c>t xt(j)

σu =

√
1
k

k∑
j=1

(
c>1 x1 +

∑T
t=2 c

>
t xt(j)

)2
− z2u.

Calculate the Lower Bound: zl = z;

Stop if

zu − 1.96√
N
σu < zl < zu + 1.96√

N
σu,

otherwise (or if test has not been applied) set k to be the next
highest integer in

K and go to 2.

5 Computational Results

The computational testing of the tuning strategies discussed in this paper
was carried out on the model of the Brazilian electricity system described in
[1]. The Brazilian power system comprises 158 Hydro power plants and 151
Thermal Power Plants. The model we consider has a 10-year horizon with
monthly time stages, giving a total of 120 stages. The hydro power plants
are aggregated to form four energy equivalent reservoirs, as discussed in [1].
The uncertainty in this problem is assumed to be only in the inflows, which
we assume to be stage-wise independent with a known lognormal probability
distribution function. It is important to point out that each month of the
year has a specific lognormal distribution, i.e. there are a total of 12 distri-
butions for each energy equivalent reservoir. It is important also to mention
that results are reported only for this single case. The efficiency of tuning
strategies will vary from problem to problem, but we expect a similar pat-
tern of results should emerge from experiments on hydrothermal scheduling
problems of commensurate size.

We use Monte Carlo sampling to select a finite set of 20 equally likely
inflow outcomes at each stage. This amounts to a sample-average approx-
imation (SAA) problem with 11920 scenarios. The scenarios for the SDDP
algorithm are sampled within the SAA problem by means of Monte Carlo
sampling. Since our intention is to identify the best algorithm for solving
the SAA problem, we also estimate the value of any candidate policy by
sampling from the SAA problem rather than the underlying lognormal dis-
tribution. All results were obtained in a 2-processor Intel Xeon X5690, with

13



32 GB RAM 1333MHz, high-performance 300 GB SAS 15000 rpm disk and
Windows Server 2008 R2 Standard Edition, using 10 parallel processes. To
solve each stage problem we use Gurobi 4.61.

In this paper we compare 21 cases, which are outlined in Table 1. We
will first give the results of each cut selection strategy for the three tree
traversing strategies, and then we will compare the three best cases. In all
cases we will compute 10,000 cuts and we will simulate over 5,000 scenarios
sampled within the scenario tree. The simulation was used to compute the

One Scenario Scenario Incrementation Traditional
600 Cuts 1 8 15
1000 Cuts 2 9 16
Level 1 3 10 17
Level 2 4 11 18
Level 3 5 12 19
DCS 6 13 20
No Selection 7 14 21

Table 1: Cases to be considered

expected operation cost over 5,000 scenarios, which will give us a better
approximation to the operation cost of each policy than an upper bound
estimated with only 200 scenarios. The simulation is performed 11 times for
each case to give an approximation of the operation cost after computing 200,
400, 600, 800, 1000, 2000, 3000, 4000, 6000, 8000 and 10000 cuts. Due to the
parallel processing implementation, it is important to point out that, in the
one-scenario-per-pass cases, we have 10 scenarios, one for each processor.

To begin with, we discuss cut selection strategies in the one-scenario-per-
pass cases 1-7. These were implemented and run until 10,000 cuts had been
computed. Table 2 and Table 3 present the values of the Lower Bound and
the expected operation cost with increasing numbers of iterations.

Observe that after 10,000 cuts the strategy of keeping the most recent
600 cuts gives the smallest Lower Bound and the most expensive policy on
average. The strategy of keeeping the most recent 1000 cuts was better
but still worse than the more sophisticated cut selection strategies. One
important aspect to point out from Table 3 is the fact that after 8,000 cuts
per stage had been computed, the cases with the dominance levels, dynamic
cut selection and no cut selection had an expected operation cost smaller
than the 600 Cuts case when it had computed 10,000 cuts per stage.

From the perspective of expected operation cost of the policy at termina-
tion, there is little to choose between dominance levels, dynamic cut selection
and no selection. Figure 2 shows the computation time in hours (solid line)

14



Case Cut Selection 4,000 Cuts 6,000 Cuts 8,000 Cuts 10,000 Cuts
1 600 Cuts 24.412 24.525 24.585 24.624
2 1000 Cuts 24.412 24.527 24.589 24.632
3 Level 1 24.413 24.527 24.591 24.634
4 Level 2 24.415 24.528 24.591 24.635
5 Level 3 24.415 24.529 24.592 24.635
6 DCS 24.414 24.528 24.591 24.635
7 No Selection 24.412 24.527 24.591 24.634

Table 2: Lower Bound for cases with one scenario per pass (109 BRL).

Case Cut Selection 4,000 Cuts 6,000 Cuts 8,000 Cuts 10,000 Cuts
1 600 Cuts 25.165 25.104 25.051 25.027
2 1000 Cuts 25.146 25.078 25.032 25.016
3 Level 1 25.136 25.062 25.014 24.995
4 Level 2 25.139 25.058 25.025 24.994
5 Level 3 25.128 25.062 25.011 24.998
6 DCS 25.134 25.061 25.027 25.001
7 No Selection 25.136 25.069 25.015 24.989

Table 3: Expected operation cost for cases with one scenario per pass (109

BRL).

15



and the speedup (bars) of each cut selection strategy compared to the no
selection case. From Figure 2, one can notice that all cut selection strategies
reduce the computation time, and the best speedup is obtained when keeping
only the last 600 cuts. Of the strategies that produced little degradation in
solution quality, the Level 1 dominance strategy was quickest, producing a
policy 11 times quicker than the no selection case.

Figure 2: Computation time for cases with 1 scenario per pass.

We now proceed to analyze cases 8-14 that use scenario incrementation.
Here the SDDP algorithm starts with one scenario per pass for each of 10
processors and at the end of every iteration (after N scenarios have been
visited) we increase k the number of scenarios per pass in each processor to
be the next highest factor of N/(number of processes). Thus when there are
10 processes and N = 200, k is chosen from the set K = {1, 2, 4, 5, 10, 20}.
This gives 10, 20, 40, 50, 100, and 200 scenarios in each forward pass.

The lower bound for the scenario incrementation case with all seven cut
selection strategies is shown in Table 4, in which we find that the lower
bound was very similar for all cut-selection strategies throughout the iterative
process. It is possible to see that from 6,000 to 10,000 cuts, the lower bound
from the 600 Cuts strategy was a little bit smaller than all other cases.

Table 5 presents the expected operation cost for the scenario incremen-
tation case, where one can observe that the expected operation cost is very
similar for all cut selection strategies, but the policies with 600 and 1000
Cuts are more expensive than the others.

Based on solution quality alone, it is hard to discriminate between Level

16



Case Cut Selection 4,000 Cuts 6,000 Cuts 8,000 Cuts 10,000 Cuts
8 600 Cuts 24.584 24.637 24.661 24.678
9 1000 Cuts 24.590 24.644 24.674 24.695
10 Level 1 24.582 24.643 24.677 24.700
11 Level 2 24.585 24.644 24.677 24.700
12 Level 3 24.590 24.644 24.677 24.700
13 DCS 24.585 24.644 24.678 24.701
14 No Selection 24.593 24.645 24.678 24.701

Table 4: Lower Bound for cases with scenario incrementation (109 BRL).

Case Cut Selection 4,000 Cuts 6,000 Cuts 8,000 Cuts 10,000 Cuts
8 600 Cuts 25.125 25.053 25.012 24.999
9 1000 Cuts 25.112 25.050 25.007 24.991
10 Level 1 25.085 25.025 24.990 24.969
11 Level 2 25.092 25.032 25.001 24.977
12 Level 3 25.087 25.024 24.990 24.972
13 DCS 25.083 25.031 24.993 24.974
14 No Selection 25.077 25.030 24.992 24.976

Table 5: Expected operation cost for cases with scenario incrementation (109

BRL).

17



Figure 3: Computation time for cases with scenario incrementation.

Case Cut Selection 4,000 Cuts 6,000 Cuts 8,000 Cuts 10,000 Cuts
15 600 Cuts 24.557 24.624 24.654 24.673
16 1000 Cuts 24.535 24.632 24.668 24.691
17 Level 1 24.551 24.630 24.669 24.694
18 Level 2 24.547 24.632 24.670 24.695
19 Level 3 24.550 24.633 24.671 24.696
20 DCS 24.544 24.628 24.669 24.695
21 No Selection 24.545 24.635 24.673 24.697

Table 6: Lower Bound for cases with traditional tree traversing (109 BRL).

1 dominance, Level 2 dominance and dynamic cut selection. Figure 3 shows
that Level 1 dominance was slightly quicker than the competing methods.

The last tree-traversing strategy we study is the traditional SDDP al-
gorithm in which all scenarios are visited in a single pass. In these cases
(15-21) we have 20 scenarios per pass for each process. Table 6 shows the
Lower Bound over the course of the algorithm. Here one can observe at the
end of the iterative process that all values are very similar, except for the
Lower Bound for 600 Cuts that is smaller.

The expected operation cost is shown in Table 7.
The computational speedups for cut selection strategies for traditional

SDDP are shown in Figure 4. As in the previous analysis, the Level 1 domi-
nance strategy provides a good policy with the best speedup.

As already discussed in [2] and [9], the traditional tree traversing strategy

18



Case Cut Selection 4,000 Cuts 6,000 Cuts 8,000 Cuts 10,000 Cuts
15 600 Cuts 25.119 25.057 25.016 24.996
16 1000 Cuts 25.140 25.066 25.007 24.990
17 Level 1 25.126 25.042 24.999 24.973
18 Level 2 25.124 25.037 24.996 24.976
19 Level 3 25.144 25.034 24.998 24.975
20 DCS 25.125 25.049 24.991 24.979
21 No Selection 25.112 25.036 24.999 24.972

Table 7: Expected operation cost for cases with traditional tree traversing
(109 BRL).

Figure 4: Computation time for cases with traditional tree traversing.

19



Case 200 Cuts 400 Cuts 600 Cuts ... 6,000 Cuts 8,000 Cuts 10,000 Cuts
7 21.944 22.864 23.254 ... 24.527 24.591 24.634
14 21.944 22.912 23.571 ... 24.645 24.678 24.701
21 8.532 20.133 20.143 ... 24.635 24.673 24.697

Table 8: Lower Bound for tree traversing strategies (109 BRL).

has a poorer performance in the early iterations when compared to the case
in which we start our problem with one scenario per pass. This is because
in early iterations the current policy tends to be myopic, so when you visit
many scenarios in one single pass this policy is likely to make similar decisions
in several scenarios, adding a number of cuts that are closely related. In
contrast, for the one scenario-per-pass algorithm, every scenario visited will
use a Bellman function approximation updated in all the previous scenarios.
For example, in the first iteration the traditional tree traversing performs a
forward pass with no cuts so all water is used in all 200 scenarios, whilst in
the one-scenario-per-pass case only the first scenario performs a forward pass
with no cuts because from the second scenarios onwards there will be cuts
available from the previous scenarios. This improves the approximation of
the Bellman function more rapidly in the early iterations.

However this advantage does not persist if the algorithm runs for many
iterations. Cases 7, 14, and 21 are compared in tables 8 and 9. Table 8
shows that without cut selection, the traditional approach (case 21) gives
better results with 10000 cuts than one scenario per pass, but comparable
results to scenario incrementation (case 14). The reason for this behaviour is
a clear benefit of visiting more than one scenario per pass as we enhance the
quality of our policy. This is due to the fact that when we have policies of
better quality, the forward pass provides different states, and in the backward
pass all scenarios will receive all 200 cuts at once. As a consequence, when
creating a cut for the previous stages all scenarios will have access to all 200
new cuts created in the next stage at the same iteration. On the other hand,
when using one scenario per pass in the backward pass the first scenario will
add just one cut per stage and, as a result, this scenario will not take into
account the other 199 scenarios. This is also the reason for the extremely
good performance of scenario incrementation, which benefits in the first few
iterations from not visiting too many scenarios, but when we have a better
policy, visits all 200 scenarios at once.

The plots in figures 2, 3 and 4 show that all three methods without cut
selection take about 12 hours to compute 10,000 cuts (with traditional tree
traversal slightly less). This is about ten times slower than these methods

20



Case 200 Cuts 400 Cuts 600 Cuts ... 6,000 Cuts 8,000 Cuts 10,000 Cuts
7 28.795 26.847 26.308 ... 25.069 25.015 24.989
14 28.795 26.913 26.639 ... 25.030 24.992 24.976
21 69.181 32.092 28.868 ... 25.036 24.999 24.972

Table 9: Expected operation cost for tree traversing strategies (109 BRL).

Case 200 Cuts 400 Cuts 600 Cuts ... 6,000 Cuts 8,000 Cuts 10,000 Cuts
3 21.733 22.828 23.264 ... 24.527 24.591 24.634
10 21.733 22.959 23.454 ... 24.643 24.677 24.700
17 8.532 20.587 20.597 ... 24.630 24.669 24.694

Table 10: Lower Bound for tree traversing strategies with Level 1 cut selection
(109 BRL).

take with a Level 1 dominance cut selection strategy.
We conclude by examining the Level 1 dominance cut selection strategy

in a bit more detail. As shown in Table 10, one can see that the traditional
tree traversing strategy eventually overtakes the strategy in which we keep
one scenario per pass throughout the iterative process.

In Table 11 we compare the estimated expected costs of the policies. The
least expensive policy is yielded by scenario incrementation, athough after
10000 cuts the traditional tree-traversing strategy and scenario incrementa-
tion achieved a very similar lower bound and expected operation cost. This
indicates that we are very close to the optimal policy in both cases.

Finally, Figure 5 presents the computation time for each tree-traversing
strategy with the Level 1 dominance cut selection strategy, in which one can
see that the computation time is very similar. The scenario incrementation
and traditional tree-traversing strategies are about 10% faster since the cut
selection algorithm is run less often.

Case 200 Cuts 400 Cuts 600 Cuts ... 6,000 Cuts 8,000 Cuts 10,000 Cuts
3 29.119 26.799 26.280 ... 25.062 25.014 24.995
10 29.119 26.726 26.240 ... 25.025 24.990 24.969
17 69.181 32.012 28.206 ... 25.042 24.999 24.973

Table 11: Expected operation cost for tree traversing strategies with Level 1
cut selection (109 BRL).

21



Figure 5: Computational time for tree traversing strategies.

6 Conclusions

The experimental results in this paper show that cut selection strategies do
not have a significant impact on the policy in terms of lower bound and
expected operation cost at the end of the iterative process, but they may
reduce the computation time by an order of magnitude. The best combina-
tion of tuning strategies, at least to solve this problem instance, is to start
the process with one scenario per pass, increment the number of scenarios
throughout the iteration, and use a Level 1 dominance cut selection strategy.
Although the traditional tree traversing strategy was quicker than scenario
incrementation and produces a similar policy after 10,000 cuts, it has the
drawback of being worse if the algorithm is terminated early.

References

[1] V.L. de Matos and E.C. Finardi. A computational study of a stochastic
optimization model for long term hydrothermal scheduling. Int J Electr
Power Energ Syst, In Press, Corrected Proof, 2012.

[2] V.L. de Matos, A.B. Philpott, E.C. Finardi, and Z. Guan. Solving long-
term hydrothermal scheduling problem. In 17th Power Systems Compu-
tation Conference 2011, volume 1, pages 1355–1362, 2011.

22



[3] V. Guigues and W. Romisch. Sampling-based decomposition meth-
ods for risk-averse multistage stochastic programs, 2010. Available
at http://www.optimization-online.org/DB HTML/2010/10/2763.html.
Date of access: 04/July/2012.

[4] T. Homem-de Mello, V.L. de Matos, and E.C. Finardi. Sampling strate-
gies and stopping criteria for stochastic dual dynamic programming: a
case study in long-term hydrothermal scheduling. Energy Systems, 2:1–
31, 2011.

[5] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimiza-
tion applied to energy planning. Mathematical Programming, 52:359–375,
1991.

[6] A.B. Philpott and V.L. de Matos. Dynamic sampling algorithms for
multi-stage stochastic programs with risk aversion. European Journal of
Operational Research, 218(2):470 – 483, 2012.

[7] A.B. Philpott and Z. Guan. On the convergence of stochastic dual dy-
namic programming and other methods. Operations Research Letters,
36:450–455, 2008.

[8] A. Shapiro. Analysis of stochastic dual dynamic programming method.
European Journal of Operational Research, 209(1):63 – 72, 2011.

[9] A. Shapiro, W. Tekaya, J.P. da Costa, and M.P. Soares. Risk neutral and
risk averse stochastic dual dynamic programming method. Available at
http://www.optimization-online.org/DB FILE/2012/01/3307.pdf. Date
of access: 04/July/2012.

23


