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Supply function equilibrium models are used to study electricity market auctions with uncertain demand. We

study the effects on supply function equilibrium of a system tax on the observed benefits of suppliers. Such

a tax provides an incentive for agents to alter their offers to avoid the tax. We show how this surprisingly

can lead to lower prices in equilibrium. The model is extended to a setting in which the agents are taxed

on the benefits accruing to them from a transmission line expansion (in order to help fund the line). In

these circumstances we study how incentives for agents to alter their bids varies with the relative size of the

capacity expansion.
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1. Introduction

In electricity market auctions, producers typically submit amounts of generation that they are

willing to supply at different prices. These offer curves are then cleared by a system operator in a

pool to yield a system marginal price. All generation offered at a price equal or below this market

price is dispatched. Each generator is then paid the system marginal price for all the energy they

are dispatched. This leads to market rents accruing on infra-marginal offers (those with offer price

below the system marginal price).

The offers of each generator may be modeled by a supply curve. In the face of uncertain demand,

each agent seeks a curve to maximize expected profit, leading to the concept of supply-function

equilibrium (SFE). SFE models have been applied to the study of electricity market auctions by

a number of authors (Green and Newbery 1992, Holmberg and Newbery 2010). Although SFE
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models are not straightforward to work with, and there is a shortage of effective computational

procedures to compute asymmetric SFE, these models deal with demand uncertainty in a natural

way, a feature that makes them increasingly useful as intermittent renewable generation grows. For

computational simplicity, it is customary in SFE models to assume symmetric players with identical

costs and capacities, and a market with a price cap. The shock in demand is chosen so that demand

exceeds the total supply capacity with some small probability. In these events the market clears at

the price cap, and load is shed. Details can be found in the recent survey by Holmberg and Newbery

(2010).

In this paper we study the effects on agent behaviour of a system tax levied on the surplus

earned by inframarginal rents. Since the true marginal cost functions of the agents are not public

knowledge, the rents are computed assuming that the supply function offered represents the agent’s

marginal cost of supply. The imposition of the tax alters the incentives of the agents in choosing

what supply functions to offer to the auction. Their offer curves will adjust in such a way to minimize

the tax paid, while not sacrificing too much profit. When electricity demand is deterministic, the

agents can anticipate the market clearing price and their dispatch quantity. Given this dispatch

point, each agent has an incentive to increase the prices of their inframarginal offers so as to reduce

the apparent benefit (while maintaining their real benefit). One might then expect all offers to

become perfectly elastic at the clearing price up to the anticipated dispatch quantity.

Uncertainty in demand alters this outcome. Agents offering horizontal bids might find if demand

is lower than anticipated that they make no money at all. In such circumstances agents do better

by offering an increasing supply curve that trades off the amount of tax paid against the need to

earn some profit. One might expect this curve to mark up offers to recover the tax through higher

prices, however we show that, in equilibrium, this strategy is only applied to the lower end of the

supply curve, and at high prices agents may discount their offers.

Our study of such a tax is motivated by a proposal mooted by the New Zealand Electricity

Authority to charge electricity market participants for transmission based on the benefits that

accrue to them from these upgrades (see NZEA 2014). Although the details of this ‘beneficiary-

pays’ scheme are still being negotiated, some effort has been devoted to estimating these benefits



Downward, Philpott, and Ruddell: Supply function equilibrium with taxed benefits
Article submitted to Operations Research; manuscript no. OPRE-2014-10-589 3

using the software used for dispatching the wholesale market and computing locational marginal

prices.

The simplest version of this estimation process works as follows. After the market is dispatched

with current transmission assets in place, the benefits of each agent are computed from their bid

and offer curves. For a generator this benefit is measured by the rentals earned from inframarginal

bids. As we have already remarked, this need not be the true benefit if these bids are marked up

above the generators marginal cost. The dispatch software is then run again using the same bids and

offers, but with the transmission assets de-rated to their pre-upgrade levels. The benefits for each

agent are then computed under this counterfactual and subtracted from the previous estimates. If

these are positive then the agents with positive net benefits contribute to the upgrade cost of the

transmission system in proportion to these net benefits. A fuller description is provided by NZEA

(2012).

The paper is laid out as follows. In section 2, we show how a tax on producer surplus gives rise

to a best-response problem whose objective a convex combination of the best-response objective

functions under uniform and pay-as-bid pricing. We then derive a symmetric equilibrium when such

a tax is imposed on two agents at the upstream end of a constrained transmission line. Section 3

compares the response to the tax under SFE with a competitive model where all generators act

as price-takers. Section 4 deals with the setting when the tax is calculated based on the difference

between the actual and counter-factual dispatch from the expansion of the transmission line.

2. Supply function equilibrium

In this paper we confine attention to a duopoly in which each player chooses a monotone piecewise

smooth curve (q, p) : [0, T ] → R2 to maximize a best-response functional of the form (1). This

is more general than Klemperer and Meyer’s (1989) definition of the SFE problem. The first-

order optimality condition for a profit-maximizing curve, given competitors’ offers, gives a system

of ordinary differential equations which, assuming symmetry of agents, yields a single ordinary

differential equation that we can solve to find the equilibrium supply functions.
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The market operates on locational marginal pricing; the system operator clears the market by

choosing prices at each node to minimize the cost of meeting demand while satisfying the trans-

mission capacity constraints. Suppliers are then paid according to some function (the pricing rule)

of their offer curve and the local price.

Different pricing rules give rise to different profit functionals that bidders seek to maximize. For

example, uniform pricing, discriminatory (pay-as-bid) pricing, and taxed producer surplus models

all have different objective functionals. When these integral functionals have the property that the

integrand is linear in the derivative of the curve, then Theorem 1 gives a uniform set of optimality

conditions.

Theorem 1 (Optimality conditions for best response). Let f, g : R2 → R be piecewise con-

tinuously differentiable functions and (q, p) : [0, T ]→R2 a continuously differentiable curve. A nec-

essary condition for the curve (q, p) to maximize the functional

Π(q, p) =

∫ T

0

(
f (q, p)

dq

dt
+ g (q, p)

dp

dt

)
dt (1)

is that Z (q, p) = ∂g
∂q
− ∂f

∂p
= 0 at every point along the curve. Furthermore, if both components of

(q, p) are nondecreasing in t then a sufficient condition for optimality is that Z = 0 along (q, p) and

∂
∂q
Z ≤ 0 everywhere.

Proof The functional Π is a line integral in the (q, p) plane. As this functional is linear in dq
dt

and dp
dt

, we can apply Green’s theorem, as in Anderson and Philpott (2002), to obtain the optimal

curve. By Green’s theorem, the integral of
(
f (q, p) dq

dt
+ g (q, p) dp

dt

)
around any simple closed curve

in the anticlockwise direction in the (q, p) plane is equal to the integral of Z over the area enclosed

by the curve. Thus if Z > 0 along part of the trajectory (q, p) then (by continuity of Z) there is

an improving deviation to the right of the curve as it is traversed. Similarly if Z < 0 along part of

the trajectory (q, p) then there is an improving deviation to the left of the curve as it is traversed.

Thus a maximal curve must have Z(q, p) = 0.

Now suppose Z = 0 along (q, p) and ∂
∂q
Z ≤ 0 everywhere. If a candidate curve is nondecreasing

and ∂
∂q
Z ≤ 0 everywhere, then there can be no region to the right of the curve on which Z has a
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positive integral and so no improving deviations exist to the right of the curve as it is traversed.

Similarly on the left there are no regions for which Z has a negative integral, so no improving

deviations exist to the left. It follows that (q, p) is a global maximum. �

Note that the condition Z = 0 is equivalent to the Euler-Lagrange equation d
dp
Fq̇ −Fq = 0 from

the calculus of variations when the offer curve is modeled as a supply function q(p). In this case,

replacing t by p gives

F = f (q, p)
dq

dt
+ g (q, p)

dp

dt
= f (q, p)

dq

dp
+ g (q, p) .

Then

d

dp
Fq̇ −Fq =

d

dp
f (q, p)− ∂f

∂q

dq

dp
− ∂g
∂q

=
∂f

∂p
+
∂f

∂q

dq

dp
− ∂f
∂q

dq

dp
− ∂g
∂q

=−Z.

We apply this theorem to both uniform- and discriminatory-price auctions, as well as auctions

where the market operator taxes a portion of producer surplus.

2.0.1. Uniform-price auction In a uniform-price auction, the expected payoff to a firm

offering a curve (q (t) , p (t)) is

ΠU =

∫ T

0

(qp−C (q))dψ (q, p) (2)

=

∫ T

0

(qp−C (q))

(
dq

dt
ψq +

dp

dt
ψp

)
dt,

where C (q) is the firm’s cost to produce quantity q and ψ (q, p) is the market distribution function

(see Anderson and Philpott 2002), which gives the probability that a supplier is not fully dispatched

if they offer the quantity q at price p. It can be interpreted as the measure of residual demand

curves that pass below and to the left of the point (q, p). The integrand in ΠU is clearly linear in

dq
dt

and dp
dt

, so we can compute the Z function as in Anderson and Philpott (2002):

ZU (q, p) =
∂ (qp−C (q))ψp

∂q
− ∂ (qp−C (q))ψq

∂p

= (p−C ′ (q))ψp− qψq,

as the cross terms containing ψqp cancel.
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2.0.2. Discriminatory-price auction In a discriminatory-price (pay-as-bid) auction (Ander-

son et al. (2013)), the expected payoff is

ΠD :=

∫ T

0

[p−C ′ (q)] [1−ψ (q, p)]
dq

dt
dt.

Again this is linear in dp
dt

and dq
dt

and theorem 1 holds with

ZD = (p−C ′ (q))ψp− (1−ψ (q, p)) .

2.0.3. Tax on producer surplus Suppose that some fraction α∈ (0,1) of the observed pro-

ducer surplus earned by a generator is paid as tax. Such a tax is unlikely to be applied by a real

regulator, but we will later see that it is equivalent, over part of price-quantity space, to the pro-

posed beneficiaries-pay scheme that will be analyzed in section 4. If the market clears at quantity

q for a generator at price π then the generator receives

R (q,π) = qπ−C (q)−α
∫ q

0

(π− p (t))dt

= qπ−C (q)−αqπ+α

∫ q

0

p (t)dt= (1−α) (qπ−C (q)) +α

(∫ q

0

p (t)dt−C (q)

)
.

This is a convex combination of uniform and pay-as-bid pricing with multiplier α. Thus the total

payoff will be

ΠA = (1−α)ΠU +αΠD. (3)

We can write down the optimality conditions for the problem faced by a generator maximizing

ΠA. These use the scalar field defined by ZA(q, p) = (1−α)ZU +αZD. Thus

ZA (q, p) = (1−α) ((p−C ′ (q))ψp− qψq) +α ((p−C ′ (q))ψp− (1−ψ (q, p)))

= (p−C ′ (q))ψp− (1−α) qψq −α (1−ψ (q, p)) . (4)

2.1. Example

We illustrate the above analysis with a simple example with two symmetric agents, located at node

1 of the two-node network shown in figure 1. Here there is a price-taking, random and price-inelastic

demand ε at node 2. The line connecting the two nodes has capacity K, which is less than the
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1 2

S1(p)

S2(p) D = ε

K

Figure 1 Symmetric equilibrium example. Line has capacity K.

maximum demand at node 2. There is no demand at node 1. This is the simplest possible model

of a transmission-constrained network.

Suppose there is a proportional tax α imposed on the observed surplus of each agent. We apply

the optimality conditions of the previous section to look for an equilibrium in symmetric duopoly.

Suppose the other player offers a piecewise smooth supply function S (p) and demand has cumulative

probability distribution function F . Then

ψ (q, p) = Pr [ε < q+S (p)]

= F (q+S (p))

and, substituting into (4)

ZA (q, p) = (p−C ′ (q))S′ (p)f (q+S (p))− (1−α) qf (q+S (p))−α [1−F (q+S (p))] . (5)

Here f = F ′ is the probability density of the demand shock. When this is strictly positive we can

divide (5) through by f (q+S (p)) to obtain

ẐA (q, p) := (p−C ′ (q))S′ (p)− (1−α) q−α1−F (q+S (p))

f (q+S (p))
. (6)

By theorem 1, the curve defined implicitly by ẐA (q, p) = 0 is a profit-maximizing response if it is

monotone and ∂
∂q
ẐA (q, p)≤ 0 for all p and q, i.e.

−C ′′ (q)S′ (p)− (1−α)−α ∂

∂q

[
1−F (q+S (p))

f (q+S (p))

]
≤ 0. (7)

The term G(x) = 1−F (q+S(p))

f(q+S(p))
is the inverse hazard rate of the distribution. In Holmberg’s (2009)

model, for pure pay-as-bid pricing, α= 1 and marginal costs are constant, so it is necessary that

G′ ≥ 0 for (7) to hold. This restricts the analysis to probability distributions that decay faster than
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the exponential distribution, which has G′ = 0. If the tax rate α is less than 1 then we are less

restricted in our choice of probability distribution for the demand shock. For instance, as shown in

the example below, if α< 1
2
, then (7) holds for a uniform distribution.

We now choose some specific problem data to illustrate the equilibrium. Suppose that the demand

shock is uniformly distributed on [0, ε̄] and α< 1
2
. Assume that the line capacity K is infinitesimally

smaller than ε̄. Suppose that marginal costs for each agent are the same and are constant (C ′ = c).

Then

∂

∂q
ẐA (q, p) =− (1−α)−α ∂

∂q

[
1− (q+S (p))/ε̄

1/ε̄

]
= 2α− 1

< 0

and so solving ZA = 0 gives a symmetric equilibrium. If we set q (p) = S (p) = Q (p), then the

condition ZA = 0 gives

Q′ (p) =
(1− 3α)Q

p− c
+

αε̄

p− c
.

This is a first order linear ODE which can be solved using an integrating factor to give

Q (p) = k (p− c)1−3α− αε̄

1− 3α
,

where k is a constant of integration that can be chosen to satisfy an endpoint condition. As the line

has a capacity that binds at the highest levels of demand, there exists a unique endpoint condition

q (p̄) = K
2
≈ ε̄

2
for which no profitable deviation is possible (see Holmberg 2008).

We can compute the changes in welfare of each agent from the change in equilibrium. Suppose

K = 1 and ε̄= 1, and consider first the case where α= 0, there is a price cap at p̄= 1 and constant

marginal costs of c= 0. In perfect competition each generator would offer at price equal to marginal

cost and earn no profit. However, in our supply function game the equilibrium curve S has equation

q (p) = p
2
. As there are two firms, the total supply is 2S (p) = p, and as the market clears when

supply equals demand 2S (p) =D (p, ε) = ε, we can write the market price as a function of demand

as p (ε) = ε. The expected consumer surplus (assuming all consumers value electricity at p̄) is

CS =

∫ ε̄

0

ε (p̄− p (ε)) f (ε)dε

=
1

6
.
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Figure 2 Equilibrium supply curves for no tax (dashed) and a 25% tax on perceived surplus (solid).

The expected producer revenue is the firm’s objective function ΠU = 1
6
. Their expected observed

surplus however, is 1
12

. If a tax is applied to this curve, the firms each pay α of their perceived

surplus, so if α= 1
4
, then each firm pays 1

48
in tax, leaving net profit of 7

48
. As shown in figure 2,

the tax gives an incentive for firms to change the shape of their offer curve. Our firms will settle on

a new equilibrium curve SA which has equation

q (p) =
3

2
p

1
4 − 1

with inverse

p (q) =
16

81
(q+ 1)

4
.

It is simple to check that this is monotone and solves ZA = 0.

The expected consumer surplus is 0.1737; the expected producer profit, before tax, is 0.1632;

and the producer surplus perceived by the market operator is 0.066. Each producer pays taxes of

0.0165 and so earns 0.1467 net profit.

Table 1 summarizes the changes in producer and consumer surplus between the untaxed and taxed

scenarios. The overall effect of the tax is a small transfer of welfare from producers to consumers.

Though higher prices are charged at times of low demand, this is offset by lower prices higher up

the offer curves. Note that social surplus (the sum of consumer and producer surpluses CS+ 2ΠU)

does not change with the introduction of the tax; this is because demand is inelastic. Also note

that expected consumer surplus actually rises once firms adjust to the tax, as the new equilibrium

SFE is more competitive for the higher demand realizations.
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Curve α CS ΠU ΠA Tax per firm Social Surplus

S 0.25 0.1666 0.1666 0.1458 0.0208 0.5

SA 0.25 0.1737 0.1632 0.1467 0.0165 0.5

Table 1 Benefits and taxes under a producer-surplus tax.

In this model where all supply and demand in node 2 is inelastic, there are no congestion rents

accruing to the system operator because there is never a price differential between the nodes. All

load that cannot be satisfied through the transmission line is lost, and when this happens the

market power of the suppliers in node 1 lets them charge the price cap. If there were elastic demand

or supply in the downsteam node, then there would be positive congestion rent.

2.2. Dependence on demand shock distribution

The first-order condition for symmetric equilibrium under the producer surplus tax (6) has a term

that is proportional to the inverse hazard rate of the demand-shock distribution. This indicates

that the higher the inverse hazard rate, the flatter the supply function equilibrium bid will be, and

the higher markups will be for small output levels. In figure 3 we plot the solutions to the ODE for

the density distributions shown in figure 4. Their inverse hazard rates are plotted in figure 5.

From figures 3 and 5, we can see that when the inverse hazard rate becomes large it dominates

the ODE. So when it is almost certain that dispatch will be above the current point on the curve,

the curve becomes very elastic. In the limit, if we are certain to be dispatched above the current

point on the curve, then minimizing the perceived surplus is the only incentive acting and the curve

should thus be perfectly elastic.

3. Modelling all firms as price-takers

It is instructive to model the effects of a producer-surplus tax under conditions of perfect competi-

tion, i.e. where all generators act as price-takers. This can serve as a benchmark to measure market

power in the ‘strategic’ oligopolistic market.

When players are price-takers, the only market information to which they can respond is the

price. It is as though they face residual demand curves at fixed prices (that are perfectly inelastic).

Hence the market distribution function to which the firms react depends only on price.
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Figure 3 Equilibria with normally distributed shock with mean 0.7 and different standard deviations 0.1, 0.2 and
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Figure 4 Densities of demand shocks used in figure 3
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Figure 5 Inverse hazard rates of demand shocks in figure 4
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If we write h(p) = ∂ψ
∂p

for the density of the distribution of prices, then, since the revenue function

is the same as for ΠA above, theorem 1 gives

(p− c′(q))h(p)−α (1−ψ(p)) = 0 (8)

as the first order condition for equilibrium. The parameter α takes us from a uniform-price auction

to pay-as-bid as it varies from 0 to 1.

3.1. ODE for equilibrium

Suppose that the market distribution function arises from a one-dimensional shock ε with density

f and cumulative distribution function F .

The system operator dispatches from the aggregate supply curve by setting Q(p) = ε. This induces

the market distribution function as a distribution on prices

Ψ(p) = F (ε) = F (Q(p)) . (9)

The density of this is then obtained by the chain rule,

ψ(p) = Ψ′(p) = f (Q(p))Q′(p). (10)

We substitute (9) and (10) into (8) to obtain the ODE

(p− c′(q))f(Q)Q′−α (1−F (Q)) = 0. (11)

This represents a fixed point in that the producers are maximizing their profit given the price

distribution f ; simultaneously the system operator dispatches by choosing prices so that supply

and demand intersect.

By the same argument as in Federico and Rahman (2003), the price bid for the last unit offered

is equal to its marginal cost. This is because there is classical Bertrand competition for the units

sold under congestion conditions. This competition pushes the top of the price distribution down

toward marginal cost, where it finds equilibrium.
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3.2. Example

To compare with the strategic SFE (section 2.1), we introduce rising marginal costs so that the

price-taking equilibrium is non-trivial

c′(q) = γq. (12)

The first-order condition (8) becomes

(p− γq) 1

ε
q′−α

(
1− q

ε

)
= 0

Q′(p) = α
ε−Q
p− γQ

(13)

This is a non-linear ODE, but it can be solved without great difficulty. If we take the same param-

eters as in the SFE example above (α= 0.25, ε= 1), but add a linear marginal cost with coefficient

γ = 0.5, we can compare outcomes. Figure 6 shows the solution to (13) alongside the solution to

the equivalent ODE for supply function equilibrium,

Q′ (p) =
(1− 3α)Q

p− γQ
+

αε̄

p− γQ
. (14)

Note that markups increase uniformly when all firms are price takers. Note also that the SFE is

determined by the price-cap, but this has no influence on the price-taking equilibrium.
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Figure 6 Equilibrium with price-taking producers, and strategic producers competing in supply functions
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4. Line capacity expansion

We now consider a model in which the transmission line is expanded from capacity J to capacity

K, and a proportional tax on observed benefits is levied to recover the costs of the line expansion.

The model is again a simple two-node network as in Figure 1, with symmetric players at one node,

and an inelastic demand shock ε at the downstream end of the line.

The motivation for the model is a proposal for a new transmission pricing scheme to cover large

grid investments in New Zealand. The NZ wholesale electricity market is dispatched according to

a combined energy and reserve co-optimization in real time with bids covering half-hour trading

periods. A range of transmission pricing schemes are under consideration that include various

combinations of

• Congestion rents

• Locational ‘postage-stamp’ charges (GIT, AoB)

• A tax on observed benefits, calculated at each trading period (SPD).

Congestion rents accrue to the system operator already in the NZ wholesale market. The way

they are redistributed does not have an effect on the strategic behavior in the real-time market.

Locational charges, once the rate has been announced, function as an additional cost of produc-

tion and so their effect on market is just a uniform markup across all levels of output. The SPD

scheme differs from other transmission pricing methods promoted as beneficiary-pays in that the

benefits are calculated as part of the dispatch, based on actual bids to the market. In fact the only

cost information used by the regulator comes from the submitted bid function. Beneficiaries-pay

transmission cost recovery schemes in NY (see Hogan (2011)) and Argentina (see Pollitt (2008))

apply charges as locational ‘postage-stamp’ fees based on an ex-ante analysis of benefits arising

from network expansion.

Presently, in the NZ wholesale market, suppliers submit bid stacks (that we model as curves).

In the delivery period, demand and intermittent supply are realized. The system operator solves

the dispatch problem to satisfy demand at least cost based on the bids submitted and subject to

transmission capacity constraints. The solution gives price and production levels for all generators.

The beneficiaries-pays scheme proposed as the ‘SPD method’ in NZEA (2014) makes an adjustment
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to payments at dispatch by solving a counter-factual dispatch problem. The dispatch is solved a

second time, with transmission lines de-rated to their pre-expansion capacity. The difference in

producer surplus between the two dispatches is calculated and generators are paid the price from the

main dispatch minus a portion of this difference. The portion of perceived benefits to be charged,

α is declared in advance. Demand may also be charged, but as its bids in the spot market are

inelastic, it has no way of strategically responding to the tariff in the short term.

Suppose player 2 offers a supply function S2(p). If player 1 offers quantity q at price p then the

market distribution function is just the probability that either the total quantity offered q+S2(p)

exceeds the line capacity K or that the combined offers of the two firms q+S2(p) at price p exceeds

the demand shock ε;

ψ (q, p) = Pr [q+S2 (p)>min(K,ε)] .

If the demand shock is uniformly distributed on [0, ε̄], then we obtain the following piecewise

definition for ψ:

ψ (q, p) =


q+S2(p)

ε̄
if q <K −S2 (p)

1 if q≥K −S2 (p) .

(15)

The partial derivatives are ψq = 1
ε̄

and ψp =
S′2
ε̄

= S′2ψq when q ≤ K − S2(p) and both are zero

otherwise. There is a jump in the value of ψ(q, p) lying on the curve q=K −S2 (p).

4.1. Payoffs

We now look at the payoffs. The actual pre-tax producer profit if a generator is dispatched θ (ε) at

price π (ε) under demand realization ε is

P (ε) = π (ε)θ (ε)−C (θ (ε)) .

The system operator assumes that the submitted curve is marginal cost and observes a different

surplus. The observed surplus is

σ (ε) =

∫ t(ε)

0

(π (ε)− p(t)) dq
dt
dt,



Downward, Philpott, and Ruddell: Supply function equilibrium with taxed benefits
16 Article submitted to Operations Research; manuscript no. OPRE-2014-10-589

where t (ε) satisfies (q(t), p (t)) = (θ (ε) , π (ε)). Integrating by parts gives

σ (ε) = [(π (ε)− p(t))q (t)]
t(ε)

t=0−
∫ t(ε)

0

−q (t)
dp

dt
dt

=

∫ t(ε)

0

q (t)
dp

dt
dt.

Taking the expectation of this surplus over all demand outcomes gives

E[σ] =

∫ ε

0

∫ t(ε)

0

q (t)
dp

dt
dt f (ε) dε

=

∫ T

0

(∫ ε

ε(t)

f (h) dh

)
q (t)

dp

dt
dt.

But ∫ ε

ε(t)

f (h)dh = Pr(h> ε (t))

= 1−ψ (q(t), p (t))

so

E[σ] =

∫ T

0

(1−ψ(q(t), p (t))) q (t)
dp

dt
dt.

This fact can also be derived form the observation that the apparent producer surplus is precisely

the difference between profits under uniform and discriminatory pricing.

The clearing price π depends on the demand realization ε and the network configuration, so

the two network configurations give two price functions, the actual price of dispatch π (ε) and the

counter-factual price π̂ (ε). These in turn give rise to two distinct realizations of producer surplus

σ (ε) and σ̂ (ε).

For a given level of demand, our firm will be dispatched at one price and quantity in the actual

and a different price and quantity in the counter-factual network. The market distribution functions

give the distributions of these price-quantity pairs relative to the firm’s offer. The firm pays a

portion α of the difference between the perceived surplus in the actual network and counter-factual

network cases; i.e. the tax is

α (σ (ε)− σ̂ (ε)) .

This gives profit net of tax of

R (ε) = P (ε)−α (σ (ε)− σ̂ (ε)) .
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The generator then constructs an offer curve to maximize this tax-adjusted profit. Since R (ε)

is the linear combination of three terms, we can express the expectation as a linear combination

of the individual expectations. Here P (ε) and σ (ε) are evaluated using the market distribution

function ψ assuming a full line capacity, whereas σ̂ (ε) is evaluated using the counter-factual market

distribution function φ assuming the unexpanded capacity. The expected profit over the entire

supply curve is

ΠL = E[P ]−α (E[σ]−E[σ̂])

=

∫ T

0

(pq−C (q))

(
dp

dt
ψp +

dq

dt
ψq

)
dt−α

(∫ T

0

q [1−ψ (q, p)]
dp

dt
dt−

∫ T

0

q [1−φ (q, p)]
dp

dt
dt

)
=

∫ T

0

(
(pq−C (q))

(
dp

dt
ψp +

dq

dt
ψq

)
−αq (φ (q, p)−ψ (q, p))

dp

dt

)
dt.

The resulting Z function is

ZL = (p−C ′ (q))ψp− qψq −α (q (φq −ψq) +φ−ψ) . (16)

In our model with a one-dimensional shock in the downstream node, [φ−ψ] is non-zero only

when

J < q+S2 (p)≤K,

in which case φ= 1. Hence our functional ΠL can be thought of as piecewise defined; equal to ΠU

when φ−ψ= 0 and ΠA otherwise.

As the integrand in ΠL is discontinuous along the line J − q− S2(p) = 0, we can no longer rely

on Theorem 1 directly. The following corollary gives sufficient conditions for an optimal supply

function against the functional ΠL.

Suppose f and g are as in Theorem 1 except for a jump discontinuity along a curve that we

define implicitly by h(q, p) = 0. Without loss of generality we can fix T1 ∈ (0, T ) and require that

h(q(T1), p(T1)) = 0; any curve that crosses h = 0 can be re-parametrized so this is true. Then we

can give sufficient conditions on optimal curves as a corollary to Theorem 1.

Corollary 1 (Sufficient condition for optimal bidding with discontinuous payoff).

The following conditions are sufficient for a curve (q, p) : [0, T ]→R2 to maximize (1):
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1. Z(q, p) = 0 at all points along the curve except T1.

2. Zq < 0 wherever h 6= 0.

3. The curve is continuous.

4. The curve crosses h= 0 exactly once, at T1.

Proof The proof is by a simple decomposition argument. Consider the problem of choosing

separate maximal curves for (1) over [0, T1] and [T1, T ] with the boundary conditions (upper and

lower respectively) h(q(T1), p(T1)) = 0. Because of condition 4, these two subproblems satisfy the

assumptions of Theorem 1. Conditions 1 and 2 are, by Theorem 1, sufficient for optimality in these

subproblems.

To pass from separately maximizing over the two subintervals to globally maximizing over all of

[0, T ], we add the constraint that the curve be continuous at T1. As our optimal solution satisfies

the additional constraint, it is still optimal. �

4.2. Example

We now consider an example. The base levels of parameters are as follows:

ε̄= 1 maximum shock

c= 0 marginal cost

K = 0.8 enlarged line capacity

J = 0.2 restricted line capacity

α= 1
4

tax rate

p̄= 1 price cap

(17)

The first order condition for an SFE is

(p−C ′)ψp− qψq = 0 for q < J −S2 (p) (18)

(p−C ′)ψp− (1−α) qψq −α (1−ψ (q, p)) = 0 for q > J −S2 (p) . (19)

Here, as in the previous example,

ψ(q, p) =


q+S2(p)

ε̄
if q≤K −S2 (p)

1 if q >K −S2 (p) ,
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so

ψp =
S′2(p)

ε̄
and ψq =

1

ε̄
.

Replacing S2(p) and q by Q(p) in (19) yields

(p− c)Q′ (p)− (1−α)Q (p)−α (ε̄− 2Q (p)) = 0,

which can be solved using an integrating factor, whereby

Q (p) = k (p− c)1−3α− αε̄

1− 3α
, (20)

with k a constant of integration. To pass through the price cap we require

k (p− c)1−3α− αε̄

1− 3α
=
K

2

k=

(
K

2
+

αε̄

1− 3α

)
(p̄− c)3α−1

.

The equation Z = 0 gives an ordinary differential equation for q < J −S2 (p) with general solution

q (p) = k (p− c) . (21)

Where k is a constant of integration. For continuity of the curve, we choose k = J
2(p∗−c) , where p∗

solves Q (p) = J
2

in (20). Our equilibrium candidate is thus

Q(p) =


(
K
2

+ αε̄
1−3α

)(
p−c
p̄−c

)1−3α

− αε̄
1−3α

if p≥ p∗

J
2
p−c
p∗−c if p < p∗.

(22)

Observe that the exponent of
(
p−c
p̄−c

)
vanishes when α= 1

3
. In that case the differential equation

(p− c)S′(p) + (3α− 1)Q(p) = αε̄

becomes

Q′(p) =
αε̄

(p− c)
,

so the symmetric equilibrium supply functions are

Q(p) = αε̄ log
p− c
p̄− c

+
K

2
for Q>

J

2
.
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Figure 7 Plot of untaxed equilibrium offer (dashed) and taxed equilibrium offers (solid) when maximum demand

is 1 and α= 1
4

(red) and α= 1
3

(blue).

The supply-function equilibria for two different choices of α are plotted in figure 7 below.

We can plot the values of ZL, as defined in (16), to see that the conditions 1, 2 and 4 of Corollary

1 are indeed satisfied for the equilibrium with α= 1
4
. In figure 8, we see that Zq < 0 everywhere and

that Z = 0 along the supply curve. Note that the discontinuity in the integrand of the objective

occurs along h(q, p) = J − q−S(p) = 0, and that the supply curve intersects this locus once, at the

kink.
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Figure 8 Plot of ZL(q, p) when competitor is playing the α= 1
4

curve from figure 7

The degree to which the taxed equilibrium is marked up above the untaxed equilibrium depends

on the range of the demand shock. If the range of the demand shock is large, then there is a high

probability that the expanded line will be congested. This means that the equilibrium offers try
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to avoid taxation of these by flattening the offer curve. This can be observed in Figure 9. As the

probability of lost load increases, small quantities are marked up more, as their contribution to

tariffs charged rises relative to profits earned when they are at the margin.
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Figure 9 Plot of untaxed equilibrium offer (dashed) and taxed equilibrium offer (solid) when the maximum demand

is 1 (red) and 2 (blue)

We finish this example by computing equilibria for α= 1
4
, ε̄= 1, and different values of J . These

are shown in Figure 10. Observe that for small increases in line capacity (from J = 0.6 to K = 0.8)

the blue and dashed curves almost coincide, so there is minimal change in offer strategy to avoid

the tax.
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Figure 10 Plot of untaxed equilibrium offer (dashed) and taxed equilibrium offer (solid) when J = 0.2 (red) and

J = 0.4 (blue)
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4.2.1. Welfare calculations We may calculate consumer and producer welfare for different

levels of tax. Taking the base level parameters (17) and repeating the analysis of section 2, we

obtain the values of Table 2. Again, the total surplus does not change.

Curve α CS ΠU ΠA Tax per firm Social Surplus

S 0.25 0.1067 0.1067 0.0833 0.0233 0.32

SA 0.25 0.1003 0.1098 0.0887 0.0211 0.32

Table 2 Benefits and taxes under a tariff on line-expansion benefits.

We see a slight decrease in consumer surplus as the very slight discounting at the top of the

offer curve is not sufficient to offset the heavy markups around q= J
2
. For small expansions in line

capacity this effect diminishes.

We can measure the change in consumer surplus, profits and tax collected as the magnitude of

the line expansion varies. We will make two parameter variations to illustrate the effects of the size

of the expansion on strategic behavior.

First, we keep K constant at 0.8 and vary J from 0 to K , we cover a range of scenarios, from

a completely new line to a minuscule (zero) increase in line capacity. In this variation the system

operator chooses J , the baseline network capacity. The change in welfare after the tariff is imposed

depends on the size of the counter-factual line J , as well as the probability of line congestion 1− K
ε̄

.

The plots for a low probability of line congestion (ε̄= 1, giving 20% probability) are shown in figure

11. Solid curves represent values pertaining to equilibria where producers take the tax into account

and dashed curves measure the same thing for equilibria where agents ignore the tax. Note that

when J ≈K = 0.8, the mark-down effect dominates so that there is actually a reduction in price

levels in the post-tariff SFE, leading to a slight gain in consumer surplus and slight reductions in

producer profits and transmission charges collected, compared to the equilibrium when no tariff is

charged.

Second, the size of the existing line J and range of demand [0, ε] are taken as given , and we

would like to know how the gain in welfare from expanding the line to K will depend on K, given

that the producers will bid SFE. We fix all parameters except K as in (17) and vary K from
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Figure 11 Welfare of distribution as J varies, with (solid) and without (dashed) strategic reaction to tariffs

J = 0.2 (no expansion) to ε= 1 (fully covering all possible demand realizations). In figure 12 we see

that, in absolute terms, the cost of the tariffs fall evenly on producers and consumers. Producer

surplus is maximized at a point where there is positive probability of lost load. This is because

the line expansion allows more power to be sold but also increases competitiveness in the market,

and also because lost load means there is a point mass in the distribution of prices at the pricecap.

As lost load reduces, this upward skew in the price distribution reduces too. Tariff revenue is also

maximized at a point where there is a small amount of lost load, this is because the producer

surplus starts to drop as the probability of lost load nears zero.
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Figure 12 Welfare of distribution as K varies, with (solid) and without (dashed) strategic reaction to tariffs

4.3. Asymmetric cost functions

Using numerical methods to solve the ODE, we can find the supply function equilibrium for a

duopoly where the two suppliers are asymmetric in their cost functions. Suppose that all the

parameters of the market are as in (17), except for marginal cost.
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We compare two linear marginal cost functions, chosen so that industry marginal cost is invariant.

One is symmetric

C ′S(q1, q2) =
(q1

2
,
q2

2

)
and the other is asymmetric

C ′A(q1, q2) =

(
3q1

4
,
q2

3

)
.

Figure 13 shows the industry supply curves for SFE under these two divisions of marginal cost.
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Figure 13 Equilibrium with producers competing in supply functions, having symmetric or asymmetric marginal

cost functions

We notice several things. First, asymmetry makes the industry slightly less competitive. This

is in line with other models of oligopoly. Second, the magnitude of markup resulting from the

beneficiaries-pay tariffs persists. Therefore it is therefore not unreasonable to suppose strategic

responses to the beneficiaries-pay tariffs will be of similar magnitude in asymmetric markets and

symmetric models.

5. Conclusion

This work has examined the incentives of firms to adjust their offering strategies (in equilibrium)

as a charge is applied as a percentage of either perceived profits (where the regulator believes that

the firm offers at marginal cost), or perceived benefits of an investment in transmission assets (e.g.

a line capacity upgrade). In a deterministic setting one may think that there would be an incentive

to conceal one’s perceived benefits by increasing the offers up to the dispatch point. However in
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a setting where the dispatch point is not known in advance (uncertain residual demand), we have

shown that a balance must be struck between concealing the benefits and maximizing the (untaxed)

profit. This new balance does not always exhibit higher mark-ups than the un-taxed regime.

In regions of quantity-price space where the tax applies, producers’ optimize functionals that are

a convex combination of uniform and pay-as-bid profit functionals. For a tax rate below a certain

threshold a symmetric SFE exists that, compared to the equilibrium without the tax, has generally

higher markups at low offer quantities but possibly smaller markups near the capacity constraint.

We discovered a counter-intuitive effect of the ‘beneficiary-pays’ charge in a duopoly setting.

When the size of the line upgrade is small – and the probability of line-congestion is low – the

consumer surplus can increase when the charge is applied, since firms submit offer curves that are

strictly lower than the untaxed curves. Moreover, due to their competition, firms in fact receive a

lower profit and actually pay more tax than they would under the un-taxed equilibrium.
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