HOW TO IMPROVE GREEN H₂ PRODUCTION EFFICIENCY FROM AN ENGINEERING PERSPECTIVE

ENGINEERING DEPARTMENT OF CHEMICAL AND MATERIALS ENGINEERING

Present by: Jingjing Liu

Department of Chemical and Materials Eng & NZ Product Accelerator University of Auckland, New Zealand

12th April2024, GEEC UoA

H₂, a green energy carrier, is an important contributor to net-zero carbon emission by 2050

- hard-to-abate sectors such as steel manufacture
- long-haul transport, shipping and aviation;
- seasonal storage of renewable electricity
- a chemical feedstock

Can H_2 generation scale up fast to meet the demand by 2050?

CAN PRODUCTION MEET THE TARGET?

NZ domestic demand for decarbonising 8% energy emission:

180,000 tonnes (1.5 GW) per year by 2035,

560,000 tonnes (4.5 GW) by 2050

	State-of-the-art	Future goal global
Water electrolysis capacity	600 MW (installed by 2021)	150GW (target in 2030)
Energy Consumption	∼53 kWh/kg H2	<42 kWh/kg H2 (by 2050)
Energy Efficiency	74 %	~ 93.8 %

CONVENTIONAL WATER ELECTROLYSER (WE)

Alkaline Water Electrolysis

Cathodic: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$,

Anodic: $20H^- \rightarrow 1/20_2 + H_20 + 2e^-$

Gas impermeable membrane or separator:

- Permeable to ions
- Avoids mixing hydrogen and oxygen
- Separate the electrodes
- Introduce resistivity/extra cost/lifespan
- Bubble reduce the active area

CONVENTIONAL WATER ELECTROLYSER (WE)

PEM Water Electrolysis

Cathodic: $2H^+ + 2e^-
ightarrow H_2$, Anodic: $2H_2 O
ightarrow O_2 + 4H^+ + 4e^-$

Gas impermeable membrane or separator:

- Permeable to ions
- Avoids mixing hydrogen and oxygen
- Separate the electrodes
- Introduce resistivity/extra cost/lifespan
- Bubble reduce the active area

Davidlfritz (2013): PEM Elektrolyse 5.gif

Advantage:

- High current density
- High efficiency
- Rapid response
 Challenges:

Challenges:

- Younger than other AE
- High cost
- Degradation

HOW TO SCALE UP IN INDUSTRY?

Water electrolyser – an old process but "YOUNG" technology

10 MW (AKL), 20 MW (PEM)

Larger stack?

Flexible power supply & high current density?

Scientific American Supplement, Vol. XXXII, no. 819: New York, 1891

 \sim 1890 (1st WE Unit)

Single Alkaline water electrolyser stack, 10 MW

PEM

Cummins largest 20 MW PEM, 2022

Jingjing Liu et al 2022, Challenges in Green Hydrogen Production with Renewable and Varying Electricity Supply: An Electrochemical Engineering Perspective J. Electrochem. Soc. 169 114503

ISSUES IN INDUSTRY SCALE UP ?

Aim: Store the renewable energy in hydrogen with high efficiency and low cost.

ON IMPROVING THE EFFICIENCY WHILE OPERATING....

Liuyi Huang

Sam Clarke

Thea Larsen Supervised by Dr Seho Kim

A POWER CONDITIONING SYSTEM

Operating conditions:

- Water temperature control up to 60 °C
- Power modulation paths controlled by a power converter
- Water flowrate
- No pressure regulation
- Two PEM electrolyser stacks
- 2021 2023

Table 1 Water electrolyser stack technical data		
	QLC-500 Model Stack	60Z series Stack
Active Area	56 cm ²	1.247 cm^2
Stack Size	2	1
Operating Current Range	0-36 A	0 - 9A
Max Current Density	0.536A/cm ²	7.217A/cm ²
Voltage Range	2.2 - 5 V	1.45 - 2.2 V
Manufacturer	Shandong Saikesaisi Energy Company	Fuel cell store

J Liu et al. Experimental investigation of PEM water electrolyser stack performance under dynamic operation conditions. Revision resubmitted, J. Electrochem. Soc. 2024.

PEM WATER ELECTROLYSER STACK PERFORMANCE UNDER DYNAMIC OPERATION CONDITIONS

Energy saving of the current regime sustained over 24 months

- H₂ production rate wasn't affected
- Cell voltage decayed over time at low medium current range (10-20% increase)
- Material degradation

10

Figure 4 (a) IV curve of new and degraded electrolyser; (b) IV curve of high and low temperature operation.

Temperature and current control→ improve Energy performance, and mitigate voltage decay

Energy saving scenario:

- Optimal current controlled path: <u>2.16</u> kWh/kg H₂ was saved from Steady State <u>57.8 kWh·kg⁻¹H₂</u>
- Efficiency increase up to +10 %

Materials degradation (undergoing work)

Sam Clarke

Thea Larsen

RELATE OPERATING REGIME TO ELECTRODE SURFACE DYNAMICS

Cells have many sources of resistance, generating Overpotentials

Simulation (COMSOL):

- Materials
- Structure (porosity, pore gradient, pore diameter, thickness, etc.)
- Catalyst
- Electrical conductivity

Experiemntal PTL and MEA properties & impact:

- Materials
- Structure (porosity, pore gradient, pore diameter, thickness, etc.)
- Pretreatment
- Catalyst
- Surface wettability
- Electrical conductivity

RELATE OPERATING REGIME TO ELECTRODE SURFACE DYNAMICS

Dunbar Sloane, Asmitha Murugananthan Maggie Li, Callum Campbell-Ross _{Dunbar Sloane}

Mesh Gas Diffusion Layer at 0.25 A/cm^2 , (4 A)

Felt Gas Diffusion Layer at 0.25 A/cm^2 , (4 A)

MODEL GEOMETRY

3mm x 2.3mm repeating

geometry

Sam Williams

Te Whare Wananga o Tamaki Makaurau NEW ZEALAND

Model does not include

membrane or cathode

COMSOL Multiphysics 6.1

FUTURE WORK OF THE SIMULATION

Yuyao Huang (PHD)

2023 Catalyst: Seeding General

Lawrence Livermore National Laboratory, a Research group led by Dr Brandon Wood.

A VALIDATED DIGITAL TOOL FOR NOVEL GREEN H2 PRODUCTION TECHNOLOGY

IMPROVEMENTS TO OVERALL ENERGY PERFORMANCE OF PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFC) VIA VARIOUS HEAT RECOVERY AND UTILISATION ROUTES

Preliminary results from a PEMFC-ORC model based on:

Commercial 5kW LT-PEMFC

Lab built micro-ORC

Dr Jenny Hung, Isaac Severinsen, Michael Kalpage, Prof Brent Young

RESULTS

- R134a among worst
- ORC efficiency increase when intermediary water loop is removed
 - Re-design?
 - Material compatibility?
 - Electrical conductivity?
- Recovery:
 - Water loop
 - Organic only

ORC net power

Acknowledgement

This work is supported by <u>NZ Product Accelerator</u>, and the <u>Marsden Fund</u> Council from Government funding, administered by the Royal Society of New Zealand (MFP-UOA2111) and the New Zealand Ministry of Business, Innovation and Employment (MBIE), Catalyst Seeding: General Fund, FRDF – UoA.

Contact: jingjing.liu@auckland.ac.nz

Co-workers and collaborators

- Meng Wai Woo, Jim Metson, Mark Taylor, Seho Kim, Andrea Kolb, Jenny Hung, Brent Young
- John Kennedy, Jérôme Leveneur, Holger Fiedler
- Aaron Marshall
- Students (Dunbar Sloane, Asmitha Murugananthan, Liuyi Huang, Ben Strode-Penny, Thea Larsen, Sam Clarke, Maggie Li, Callum Campbell-Ross, Anie Shejoe, Yuyao Huang)
- Technicians (especially David Cotton)

