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GREEN H2 ECONOMY

H,, a green energy carrier, is an important
contributor to net-zero carbon emission by 2050
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‘ CAN PRODUCTION MEET THE TARGET?

NZ domestic demand for decarbonising 8%

energy emission:

180,000 tonnes (1.5 GW) per year by 2035,

560,000 tonnes (4.5 GW) by 2050

Future goal

3,000 ~

2,000

Electrolysis capacity (GW)

\

State-of-the-art
global
ele:\::':'sis 600 MW 150GW
.y (installed by 2021) (target in 2030)
capacity
Energy - <42 kWh/kg H2
Consumption 53 kWh/kg H2 (by 2050)
SO 74 % ~93.8 %
Efficiency

3 Source: MBIE NZ Interim H2 roadmap 2023

(Source: IRENA report 2020)
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Probabilistic feasibility space of
electrolysis growth, analysis
model (Odenweller, A. et al.
Energy Nature, 2022)
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CONVENTIONAL WATER ELECTROLYSER (WE)

Alkaline Water Electrolysis H, O,
Overall cell:
electricit 1
H,0 + energy <y, H, +EOZ

Cathodic: 2H,0 + 2e" — H, + 20H,
AnOdi(: ZOH__) ]/202 + H20 + 26_ Conventional configuration Zeroqp

. (a) (b)
Gas impermeable membrane or separator:
- Permeable to ions electrodes electrolyte gas
- Avoids mixing hydrogen and oxygen separator solid porous liquid confined GDL compartments

- Separate the electrodes
- Introduce resistivity/extra cost/lifespan
- Bubble reduce the active area
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CONVENTIONAL WATER ELECTROLYSER (WE)

PEM Water Electrolysis

Overall cell:
electricity

1
H,0 + energy » H, + EOZ

Advantage:

* High current
density

Cathodic: 2H + 2e™ — H,

* High efficiency
Anodi: 2H,0 —» 0, + 4H™ + 4e~

* Rapid response

: Challenges:
Gas impermeable membrane or separator:

Permeable to ions
Avoids mixing hydrogen and oxygen other AE
Separate the electrodes * High cost

Introduce resistivity/extra cost/lifespan * Degradation
. Davidlfritz (2013): PEM Elektrolyse 5.gif
Bubble reduce the active area

* Younger than

5 S Marini et al: Advanced alkaline water electrolysis. Electrochimica Acta, (2012) 384-391. NZPFDG'UCL' i - Accelerator :*?*;
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https://commons.wikimedia.org/w/index.php?title=User:Davidlfritz&action=edit&redlink=1

‘HOW TO SCALE UP IN INDUSTRY?

| Water electrolyser — an old process but “YOUNG” technology

electricity
Hzo — Hz + EOZ

10 MW (AKL), GW producﬁon line ? Larger stack?
20 MW (PEM)

AND/OR

Electrolyser
Stack

‘ Flexible power supply & high current density?

Scientific American Supplement, Vol.
XXXII, no. 819: New York, 1891

~ 1890 (1% WE Unit)

Single Alkaline water
electrolyser stack, 10 MW

Cummins largest 20 MW PEM, 2022
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‘ISSUES IN INDUSTRY SCALE UP ?

Jingjing Liu et al 2022, Challenges in Green Hydrogen Production with Renewable and Varying Electricity
Supply: An Electrochemical Engineering Perspective J. Electrochem. Soc. 169 114503

Aim: Store the renewable energy in
hydrogen with high efficiency and low cost.

————————————————————— -
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ON IMPROVING THE EFFICIENCY WHILE OPERATING....

. NFaradaic X HHVHZ 1.48

NEnergy = = NFaradaic
nF X Ucell Ucell
" SYSTEM LEVEL LV} oria & J Leveneur, J Liu, H Fiedler. SYSTEMS AND METHODS FOR PERFORMING
4 EXCHANGE MEMBRANE ELECTROLYSIS (2022 Provisional filed)
IRENA (2020) RN = :
A
Deoxo
Gas separator Gas separator

Feed water
supply

= Pressure & tem

=  Electrochemical
= Water & bubble
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A designed
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A POWER CONDITIONING SYSTEM

Operating conditions:

=  Woater temperature control up to 60 °C

=  Power modulation paths controlled by a

power converter

"  Water flowrate

®= No pressure regulation

=  Two PEM electrolyser stacks

7.

Fume Hood — \Nater

=== Hydrogen ==
= Oxygen

> Thermocouple

== Computer Connections
Power Supply
== Oscilloscope Conne

Thermocouple Connection

Livyi Huang

Sam Clarke

Thea Larsen
Supervised by

Main
[ —_
2021 - 2023 Mein P __I_Ill.C
Supply I
I -k
I 11
11
Table 1 Water electrolyser stack technical data A 4 I 11
Controller -
QLC-500 Model Stack 60Z series Stack Controller | L Oscilloscope
Active Area 56 em? 1.247 cm? : T, I
Stack Size 2 1 1
) Data Logger
Operating Current Range 0-36A 0-9A \
Max Current Density 0.536A/cm? 7.217A/cm? =
Peristaltic
Voltage Range 22-5V 1.45-22V Pump

Shandong Saikesaisi
Energy Company

Manufacturer Fuel cell store

Dr Seho Kim
Extraction Hood
ction @
H2 Sensor
Water Trap Flowmeter
Heater
Power
Desiccant Supply
Packed Heating Element
Column
PEM (
Electrolyser Bath
< NA )
§tirrer
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J Liu et al. Experimental investigation of PEM water electrolyser stack performance under dynamic operation
conditions. Revision resubmitted, J. Electrochem. Soc. 2024.

PEM WATER ELECTROLYSER STACK PERFORMANCE UNDER o Gl
DYNAMIC OPERATION CONDITIONS

Energy saving of the current regime sustained

Thea Larsen

over 24 months Temperature and current control>
improve Energy performance, and
- H, production rate wasn’t affected mitigate voltage decay

- Cell voltage decayed over time at low — medium current
range (10-20% increase)

- Material degradation Energy saving scenario:
55 1 > =  Optimal current controlled path: 2.16 kWh/kg H, was
saved from Steady State 57.8 kWh-kg'H,
5 5 -
' = Efficiency increase up to +10 %
S 45 S 45
Eﬂ &
§ 4 A ——1|V Curve 2021 E 4 A
. Water bath room T
IV Curve 2023
—— High water bath T
3.5 1 3.5
i Materials degradation (undergoing work)
3 T T T T T T T | T T T T T T T 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Current (A) Current (A)
Figure 4 (a) IV curve of new and degraded electrolyser:; (b) IV curve of high and low temperature operation. / THEUNIVERSITY.OF
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RELATE OPERATING REGIME TO ELECTRODE SURFACE

‘ DYNAMICS

Cells have many sources of resistance, generating Overpotentials

Vcell = VreV + (nact,an + T]act,cath) + Nohm + (nconc + Naiff + T]bub)

Free Energy
1.230r 148V

Simulation (COMSOL):

- Materials

- Structure (porosity, pore gradient,
pore diameter, thickness, etc.)

- Catalyst

- Electrical conductivity

* Catalysis activity
* materials modification

\ - Kinetics Material Design| . syrface area
- Mass transport related: S PTL

Anie Shejoe
(PHD)

Dunbar Sloane

Asmitha Murugananthan
Maggie Li,
Callum Campbell-Ross

Influenced by * Bubble behaviour

Cell Operations: | * Current density, thermal
b= == > | management

Experiemntal PTL and MEA properties &impact:

Materials

Structure (porosity, pore gradient, pore diameter, thickness, etc.)
Pretreatment

Catalyst

Surface wettability

Electrical conductivity
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Anie Shejoe
(PHD)

‘ RELATE OPERATING REGIME TO ELECTRODE SURFACE DYNAMICS =

Dunbar Sloane, Asmitha Murugananthan
Maggie Li, Callum Campbell-Ross

‘Dunbar Sloane

Felt Gas Diffusion Layer at 0.25 A/cm?, (4 A) Mesh Gas Diffusion Layer at 0.25 A/cm?, (4 A)



MODEL GEOMETRY

3r+m x 2.3mm repeating COMSOL Multiphysics 6.1 Model does not include
geometry membrane or cathode

SS 304 bipolar
plate with
flow channel

Water flow

channels and
water filled

walls S;DL pores

x10° um

3

Ti Mesh GDL

1 x10°um
IrRuOx anode

catalyst 0 I

X 0
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FUTURE WORK OF THE SIMULATION

2023 Catalyst: Seeding General

Lawrence Livermore National
Laboratory, a Research group led
by Dr Brandon Wood.

A VALIDATED DIGITAL
TOOL FOR NOVEL GREEN
H2 PRODUCTION
TECHNOLOGY
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Dr Jenny Hung,
Isaac Severinsen,

IMPROVEMENTS TO OVERALL ENERGY PERFORMANCE OF Michael Kalpage,
PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFC) VIA Frof Brent Youns
VARIOUS HEAT RECOVERY AND UTILISATION ROUTES = th

Preliminary results from a PEMFC-ORC model based on:
Commercial 5kW LT-PEMFC

Lab built micro-0RC

NZ 9773 THE UNIVERSITY OF
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o ORC net power
ORC Efficiency =
. FC waste heat power

6.0%

5.0%
R134a among worst 1.0%
3.0%
ORC efficiency increase when o
. . . 1.0%
intermediary water loop is removed .
° Re-design? " R2%0 R134a R22 R12 R600a R152aR142b R113 R4D R717 R21 R113
- Material compatibility? = Waterloop = Organiconly
- Electrical conductivity? __ORC net power
Recovery —
FC net power
7.0%
Recovery: 6.0%
- Water loop 4.7 - 5.7% EZ
« Organic only 54 -6.6% -

X =

OO

. OO
00

OD

. 00
0.0%

2.0
1.0
R290 R134a R22 R12 R600a R152a R142b R113 R40 R717 R21 R113

m Water loop m Organic only 16
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