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Abstract

Models for computing dispatch and prices in wholesale electricity mar-
ket pools are typically deterministic multiperiod mathematical programs
that are solved in a rolling horizon fashion. In convex settings with per-
fect foresight these optimization problems yield dispatch outcomes and
locational marginal prices that solve a competitive equilibrium problem.
The use of these models in practice is challenging for several reasons, par-
ticularly in the context of increased uncertainty resulting from growing
investment in renewable energy. Deterministic models can miscalibrate
the value of holding energy in storage or positioning the system to meet
future ramping constraints, leading to inefficient dispatch decisions. Pric-
ing outcomes from the models are dependent on the point forecasts used
as inputs, leading to inefficient remuneration and uplift payments that
compensate participants for the fact that the system operator forecasts
the future incorrectly. To address these challenges, researchers and prac-
titioners have proposed a variety of model enhancements (e.g., the use
of longer lookahead periods or the implementation of stochastic program-
ming models using scenario trees) that increase the computational and
informational demands placed on the system operator. We present a class
of new economic dispatch models that instead attempt to overcome these
drawbacks through the use of agent decision rules. Forecasting future
outcomes or scenarios passes from the system operator to market partici-
pants, who implicitly make state-dependent offers of energy through these
decision rules. We show how storage and ramping can be priced correctly
in convex markets and illustrate the advantages of the approach through
simple examples.
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1. Introduction

Wholesale electricity markets across the world are confronting challenges brought by a rapid
transition away from traditional technologies toward solar, wind, storage, and distributed energy
resources. As increasing numbers of batteries and flexible loads shift consumption “behind the
meter”, market operators face greater uncertainty in net demand. This challenge has become par-
ticularly acute in jurisdictions with high renewable penetration, such as Australia (Nelson et al.
2025)).

Growth in renewable supply has motivated a great deal of research investigating improved
algorithmic approaches for managing uncertainty and for coordinating storage and distributed
resources, e.g., through stochastic or robust optimization. To date, however, real-world systems
have stopped short of an explicit treatment of uncertainty in algorithms used for unit commitment,
economic dispatch, and price formation. An alternative to purely operator-managed uncertainty is
to enable batteries and other flexible devices (often through aggregators) to participate directly in
wholesale dispatch and pricing mechanisms by submitting supply and demand bids. Such participa-
tion can increase market efficiency by coordinating these bids with other dispatchable services, such
as peaking plant. To improve the participation of load-shifting and ramping services, market oper-
ators have implemented a variety of market design adaptations, such as new market participation
models for batteries and new ancillary service products for ramping.

In this paper we consider alternative ways to incorporate stochastic elements in short-term elec-
tricity market design and propose a change in the format of bids and offers supplied by market
participants. In current practice, market operators rely on a series of deterministic lookahead mod-
els solved in a rolling horizon fashion, taking bids and offers from market participants as an input
into the models. This approach leads to three potential issues. First, the use of a deterministic
formulation may lead to suboptimal decisions and inefficient prices within the lookahead horizon.
Second, the use of a finite lookahead horizon can lead to myopic decisions that fail to prepare
the system for operations beyond that horizon. Third, the parameterization of lookahead models
requires the system operator to make decisions (e.g., regarding demand forecasts) that can mean-
ingfully affect prices, with unclear consequences for efficiency in both short-run operations and
long-run investment. With these three issues in mind, the goal of this paper is to shift auctions
away from the conceptual framework of model predictive control toward that of dynamic program-
ming. In place of classical price-quantity pairs, our proposal aims to enable market participants to
submit offers that amount to Agent Decision Rules (ADRs) that can be adapted to any scenario
that arises. In a dynamic setting, decisions depend not just on the profits earned in a given interval,
but also on a value function reflecting the future benefit of being in a different state at the end of

that interval. The classical supply functions used in current formulations for commitment, dispatch,
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and market clearing do not include a direct way of expressing this value function. Effectively, the
current format embeds an assumption that future benefits will be unrelated to the state transition
that results from current decisions. While such an assumption may have been reasonable in the
past, when intertemporal constraints were less of a concern for operators, it is increasingly suspect
given issues with ramping constraints and battery state-of-charge limits.

Rather than relying primarily on the system operator, the ADR approach to uncertainty man-
agement depends on market participants to develop their own view on future uncertainty and
incorporate it in their bids and offers. As such, the proposal reflects a continuation of debates
about the split of responsibilities between market participants and the market operator that have
been ongoing since the introduction of competition. Some markets, such as in New Zealand and
most of Australia, rely on self-commitment of thermal generators, while others, including most of
the U.S., rely on central commitment. Some markets, like in Alberta, rely purely on participant
offers, while others, like much of South America, rely on costs estimated by the system operator.
Still others, as in the U.S., rely on a complicated mix of these, with participant offers replaced
by cost-based offers in cases of significant market power. In other words, while sharing common
theoretical underpinnings, competitive markets in different jurisdictions have evolved in very dif-
ferent directions to accommodate their specific technological and regulatory contexts. In the U.S.
context, growth of wind and solar has led many to argue for a more centralized approach. The
California Independent System Operator (CAISO), for example, describes its operational issues as
stemming from “the challenges of having a limited optimization horizon,” indicating a desire to
extend its modeled lookahead horizon further into the future if computationally feasible (Depart-
ment of Market Monitoring|[2024). Our analysis instead suggests a clean division of responsibility
at the frequency of market clearing (e.g., 5 minutes in U.S. markets), with the market operator
solving a single-period economic dispatch model to generate prices that balance projected supply
and demand in each interval but employing control mechanisms to ensure more precise balancing
within the interval. At the same time, the analysis enables insight into the conditions under which
a more operator-driven approach to managing uncertainty across market-clearing intervals may be
required.

In an idealized setting with a fully specified scenario tree, a socially optimal schedule for dis-
patch under uncertainty can be determined through stochastic programming. This observation
has motivated many studies examining the use of stochastic programming in dispatch and market
clearing, primarily examining simpler two-stage models (see, e.g., |Pritchard et al. (2010)), |Zavala
et al. (2017), Cory-Wright et al.| (2018]), Zakeri et al| (2019)). Rolling horizon models implement
the dispatch from the current period and re-optimize the model with a new scenario tree starting in

the next period. The prices generated by these models support the schedules that would be chosen
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by profit-maximizing market participants, as long as agents are risk neutral and agree on the prob-
abilities attached to each scenario. With assumptions enabling complete trading in risk, this result
can be extended to situations with risk aversion (Ferris and Philpott|2022). While moving from
current deterministic formulations to stochastic programming could improve the management of
uncertainty within the lookahead horizon, it would not address the issues of myopia and conflict-
ing beliefs noted above. Given that the implementation of stochastic programming would require
simplifications from the full scenario tree, a key question is how the market operator would choose
scenarios for use in the model. The construction of scenarios could have meaningful effects on the
prices ultimately formed, leading to divergence between the schedule determined by the market
operator and the ones preferred by individual agents (Mays|2024)).

Issues connected to dispatch under uncertainty have led to ongoing evolution in the participation
models used by batteries in U.S. markets. Given its early deployment of significant battery capacity,
discussions of new participation models are most active in CAISO, which employs a deterministic
lookahead economic dispatch model in real-time market clearing that extends two hours into the
future. In CAISO, gate closure occurs 75 minutes in advance of each operating hour and offers
must be constant through an operating hour. From a dynamic programming standpoint, efficiency-
maximizing offers in later periods of the lookahead horizon should depend on decisions made earlier
in the horizon. Typically, it can be expected that the residual value of energy stored in a battery
will increase as the battery gets closer to being empty. The current rules introduce inefficiency into
the dispatch in two ways. First, due to gate closure, the battery operator does not know what its
state of charge will be at the beginning of the operating hour and so is not able to match its offer to
its estimate of residual value. Second, if the battery offers a set of constant price—quantity pairs for
the hour, the market clearing engine can select the cheapest segment of the curve in each 5-minute
interval rather than moving up the residual value curve as the battery is discharged. In response to
these issues, CAISO is contemplating changes that would allow state-of-charge-dependent battery
offers but would introduce non-convexity to the otherwise convex economic dispatch (Zheng et al.
2023, |Chen and Tong|[2023)). In principle, the ADR-based approach advanced in this paper would
enable offers to depend on state of charge and avoid issues with gate closure without introducing
non-convexity.

In addition to changes to participation models, several authors have proposed to resolve issues
with mismatched incentives by modifying price formation in a way that mitigates the potential for
market participant losses. Here the issue is that energy prices in the first period of each lookahead
model solution are binding for settlement, whereas the remaining prices are only provisional. The
lookahead model may hold energy in a battery or pre-position a ramp-constrained generator in

anticipation of higher future prices, even if the market participant does not believe that such
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high prices will arise. More generally, the sequence of prices generated in a rolling horizon fashion
with lookahead models relying on forecasts often turn out to be different ex-post from the prices
that would be obtained from solving a perfect foresight model with the observed values of the
parameters. This results in a so-called lost opportunity cost faced by market participants who would
have acted differently from their dispatched quantities if they had known the prices in advance. U.S.
markets use side payments to encourage compliance with operator instructions. These payments
are large and growing, amounting to 7 percent of battery revenues in CAISO in 2023 (Department
of Market Monitoring|2024). In an effort to limit these payments, mechanisms to ensure consistency
between rolling horizon and perfect foresight models in the deterministic setting were proposed by
Hogan| (2016) and studied by Hua et al.| (2019). Real-time price consistency in a stochastic setting
is addressed by (Cho and Papavasiliou (2023), who propose a pricing model that minimizes expected
ex-post lost opportunity cost, a measure of the regret experienced by market participants when
they view their historical dispatch in the realized sequence of prices. A challenge in the analysis
of these alternative pricing models is that adjustments to price formation can lead to different
opportunity costs for resources, leading to different participant offers and inefficient commitment
and dispatch solutions. As in [Eldridge et al. (2023allb), we adopt a different approach to Cho and
Papavasiliou (2023) by placing the focus more on ex-ante outcomes. When generators and battery
owners face future uncertainty they take positions that risk losses. Some of these losses result from
being dispatched in advance of a realized random price under which they would have preferred to
be dispatched differently. In our dispatch model, we propose that the generators should factor this
possibility into their ADRs and not be compensated with an uplift payment should they experience
some ex-post losses.

The specification of state-dependent future cost functions has a natural interpretation using
dynamic programming, where market participants construct offers that fully encode decision rules
applicable to any potential state of the system. These policies form the basis of Lagrangian relax-
ation techniques for solving deterministic economic dispatch problems that have a long history
dating back to Muckstadt and Koenig| (1977)). Over the last twenty years Lagrangian relaxation
models have been superseded by mixed integer programming formulations that generally yield bet-
ter solutions (Hobbs 2001} |Li and Shahidehpour|2005). In recent years, the increase in renewable
energy and battery storage has resulted in a renewal of interest in Lagrangian relaxation for solving
stochastic economic dispatch problems (Brown and Smith|[2025), resulting in price-directed deci-
sion rules for optimizing the generating decisions of plants in any observed state of the system. Our
approach is similar, but constructs ADRs that provide state-dependent energy offers to a system

operator. The ADRs will involve a short-run marginal cost and a future cost function that enables
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the system operator to dispatch resources and generate prices by solving a single-period economic
dispatch problem.

Ideally, decision rules from dynamic programming solutions will approximate socially optimal
policies. We show that a dispatch that maximizes expected social welfare can be duplicated by
ADRs when all agents share the same information and beliefs as the social planner, and the costs
and constraints of the social planner satisfy some separability conditions. While it is difficult
to demonstrate convergence to a socially optimal equilibrium more generally, we give some sim-
ple examples showing how dispatching based on imperfect decision rules can achieve results that
approximate the social optimum.

Our contributions can be summarized as follows.

1. We propose a new form of energy offer for market participants, an ADR, that encapsulates
their view of future market conditions.

2. We show how an optimal dispatch can be computed by solving a sequence of single-period
problems without requiring lookahead. We show that prices from this process approximate the
correct prices for competitive equilibrium.

3. We define the concept of ADR partial equilibrium, a situation in which agent’s beliefs of
future prices give rise to ADRs that together result in the conjectured prices, and give an example
of such an equilibrium.

4. We show how an ADR partial equilibrium in a setup with a complete market for contingent
contracts will result in agents assuming the same probability distributions about future events.

5. We show how a dispatch that maximizes expected social welfare can be duplicated by agent
decision rules when all agents share the same information, and the costs and constraints of the
social planner satisfy some separability conditions.

6. We describe an approach for separating the decisions of the system operator (who should
ensure a reliable supply of power) from market participants (who seek to benefit financially from
their foresight into future market conditions).

The paper is laid out as follows. In Section [2] we formulate a simple deterministic example of an
electricity dispatch model to establish an optimization framework and notation for the rest of the
paper. Section [3] then defines ADRs and the notion of an ADR partial equilibrium in this setting.
Section [4] establishes a correspondence between social optimization and partial equilibrium when
agents share the same probability beliefs. To illustrate the use of ADRs in a practical setting, we
discuss two numerical examples in Section [5] Section [f] gives a selection of optimization problems

in electricity markets that are amenable to modeling using ADRs, and Section [7] concludes.
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2. Multiperiod economic dispatch

In this section we define a simplified version of a convex multiperiod economic dispatch problem
for an electricity system, where we ignore many of the complex constraints that are a feature of
these models in practice. Our purpose here is to to fix notation and to provide a framework and
definition of Agent Decision Rules in the convex setting. To do this consider the following social

optimization problem.

SOP: min 3, (c*(x(t)) + LT 2(t))
s.t. Ax(t)+2(t) >d', t=1,2,...,T,

z(t) € [0,d"], =(t)e X"

Here, decision variables z(t) incur cost ¢!(z(t)) and must lie in the feasible set X = X (z(t — 1)).
The total output in period ¢ is Az(t) where A is a real matrix. This must meet demand in period
t denoted d', where z(t) represents lost load, penalized at a shortage cost denoted L. To allow for
load at different locations we penalize L' z(t) where L is a vector of (possibly) different lost load
costs. We assume throughout that SOP is a convex optimization problem.

The model SOP is quite general.

ExaMPLE 1. If z(t) = (q(t), f(t)) consists of generation ¢(¢) and transmission flows f(t), where

the kth row of Az(t) would equal the net supply in node k of a transmission grid, giving

a(t) + Z (fue(t) = fra(t)) + 24 (t) = d..
1
The constraints x(t) € X(xz(t — 1)) would then be

(q(t), f(t)) € Qq(t — 1)) xF

where
(@) ={¢:0<¢<q¢"™,q—q<p,§—q=< 0} (1)

represents generation capacities (¢™*) and ramping constraints on generation, and F denotes the
set of feasible transmission flows meeting thermal limits and loop-flow constraints in a DC-Load
flow model. The cost function ¢*(q(t), f(t)) would measure a variable cost of generation and zero
cost for transmission. O

EXAMPLE 2. One could set z(t) = (q(t),y(t),u(t),v(t)) in a single location model, where ¢(t) is
generation, y(t) is storage, v(t) is storage charging rate and u(t) is storage discharging rate. Then
Ax(t) would give

S 60 + s st) = Xy vilt) + 2(0) 2
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where G is a set of generators, B is a set of batteries,
z(t) = (q(), y(1), u(t),v(t)) € Qg(t — 1)) xV(y(t - 1)),
and Q is defined by and
V(@) ={(y,u,0): 0<y<E,0<u<r,0<v<sy=7—utnv}

Here r and s are bounds on rates of discharge and charge respectively, and the diagonal matrix
7 measures the round-trip efficiency of the battery. As before we would set ¢!(q(t),y(t),u(t),v(t))
to be the variable cost of generation, where battery cycling costs could be imposed with a cost on

u(t). O

3. Agent decision rules
Moving away from the deterministic social optimization problem, we now consider a competitive
market consisting of a set Z of agents. Each agent i € Z seeks to choose actions to maximize its
expected surplus over periods t =0,1,2,..., where agent ¢ operates in probability space (2, F,P;)
endowed with a filtration {F;}7_,. We assume that the sample space and filtration is fixed and
known by all agents, but they may have different probability measures. Demand d* is a random
variable measurable with respect to ;.

The action of x; of each agent i is constrained to lie in a convex set X;(z;). Note that this set
depends only on the incoming state of agent i, as is the case in Example [I] and Example

To simplify the analysis we will henceforth use a finite sample space, so the probability space for
each agent can be interpreted as a single scenario tree 7 with root node 0, and demand d™ defined
at each node n € T, but with (possibly) different probability measures. Here we use notation n— to
denote the predecessor node of n and n+ to denote the set of immediate successors of n. To align

the agent problems with the social optimization problem SOP we make the following assumption.
ASSUMPTION 1. ¢"(z) =), c(x;), and X (x) =[], Xi(z;)

In practice this is not restrictive as long as ownership structures are simple. Hydro stations operated
by different agents but linked in a cascade would be an exception. In node n € 7\{0} we assume
that agent ¢ € Z observes their own incoming state z;(n—) and the states of other agents x_;(n—).
In node n we assume that the agent also observes d"” determining the demand outcome. For each
n € T\{0}, agent ¢ constructs a concave function V;"(x;(n)) that estimates their future expected
surplus from node n onwards given their outgoing state z;(n).

The future value function V;"(z;) is estimated by agent ¢ using their probability distribution of
future energy prices, m;(n), and the recursion

VME) = max {m(n) Az —c(z)+ > Pim|n)V;™ ()} (2)

z; €X; (T,
1 Z( Z) 'I)LETL+
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Here A.; denotes the columns of A that correspond to agent i. Since we make no assumption that
all agents share the same beliefs about the probability distribution of demand and future prices, m;
has subscript i. The expectation is conditioned on the history of demand, and is computed using
agent i’s conditional probability P;(m|n). The function R} (-) =3 ... Pi(m|n)V/"(-) is called
the Agent Decision Rule (ADR) for agent i.

Market agents can communicate their views of the future to the system operator using an ADR
that will describe how to dispatch their plant in each period (say an hour) over the next day and
could capture the expected future revenues via a value function. A typical ADR will be a function
of observable parameters in the electricity system. For example these could be the time of day, the
air temperature, the state of charge of a battery, the previous hour’s dispatch, and the previous
hour’s electricity price. In node n, each agent ¢ supplies the function ¢;, the participant constraints
X" = X;(z;(n—)) and ADR R}(-) to the system operator who solves

DP(n,z(n—)): min >, ¢?(z;)+ L 2=, R*(x;)

s.t. Zz AT’IIl +z2> dnv [ﬂ-(n)]?

z€[0,d"],z; € X"

to yield a dispatch x(n) and prices m(n). Demand then pays m(n)"d", and each agent i is paid
mw(n)" Azi(n). Observe that the system output Ax is now expressed as the sum of agent outputs
> Az, Also note that this is a single-stage deterministic dispatch problem. The system operator
does not forecast any values for future demand, but relies on the ADRs to ensure that they are in a
position (either by ramping up generation or charging their battery) to meet a future demand peak.
Nevertheless, the system operator is responsible for reliability of operations that are manifested
via a variety of different operational and security constraints. Such constraints, and aspects of
frequency and voltage control within the dispatch interval, should be incorporated directly into
the dispatch problem. Determining the right form of these constraints could involve additional
(offline) analyses or machine learning models that inform the composition and structure of these
constraints.

In this setting, we assume that R}(-) is provided by agent i in “real time” in node n after the
history of n (including the demand in node n) has been observed. An alternative “long-lived” ADR
could be provided at n = 0; to make this replicate the real-time ADR for every node n the agent
would need to provide an adapted history-dependent ADR sequence for each node n € 7. This
sequence will depend of course on what information is observed by each agent in each node. In this
paper we take the view that all agents have complete information on other agents incoming states
(and the history of these).

It is clear that the prices that are paid after market clearing might not be the same as those

assumed by the agents when deciding their ADRs. This motivates the following definition.



Philpott,Ferris,Mays: Stochastic dispatch
10 Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!)

DEFINITION 1. Given a scenario tree 7 with demand {d"},c7, an ADR partial equilibrium is a
set of prices {m*(n)},ec7, agent actions {z*(n)},e7, and ADRs {R?(-) },e7,i € Z, such that:
1. for each ne€ T, z*(n) solves DP(n,x*(n—)) with shadow prices 7*(n);
2. for each n € T\ {0} and i € Z, x}(n) solves
z,.exrf(lg}fn_)){w*(n)TA'iIi — i (@) + R (z0) };

3. for each n €T that is not a leaf node and i € Z,

Ri(xi(n)= Y Pi(m|n)(x"(m)" Asa}(m) - c (&} (m)) + R} (2] (m))).

men+

An ADR partial equilibrium occurs when the stochastic process of ADRs, dispatch and prices
assumed by each agent ¢ yields the same stochastic process of prices and dispatch in market clearing.
This is a form of rational expectations equilibrium (see Lucas Jr and Prescott| (1971)) but also has
similarities to recursive competitive equilibrium (see |Prescott and Mehra (2005), Aiyagari (1994))
and to mean-field games (see |Lasry and Lions (2007), |Gomes et al.| (2010])). Unlike these papers,
we work with a finite number of competing agents. We make the assumption that the agents do
not behave strategically with respect to other agents’ actions in the same state of the world (as
might happen, e.g., in a Nash equilibrium where agents seek to influence the market price).

The following two-period example illustrates an ADR partial equilibrium.

ExaMPLE 3. Consider a scenario tree with three nodes and three agents: batteries A and B with
capacity 1 MWh and equal efficiency n = 0.8, and a thermal plant C with unlimited capacity and

no ramping constraints. Suppose the marginal cost of plant C with output ¢ is

1, 0<¢<2
¢(q) =14 2¢—3, 2<q<3,
3, q>3.

At time zero in node n =0, demand is d(0) = 3.5 and each battery holds 1 MWh of charge at the
start of the period. At time 1, two demand outcomes are possible, defined by successor nodes n =1
with d(1) =2 and n =2 with d(2) =4. Agent A assigns P(1) = 0.6, P(2) = 0.4, and agent B assigns
P(1) = 0.4, P(2) = 0.6.

The ADR partial equilibrium is defined by charge and discharge actions v;(n), u;(n) of A and B,
and generation actions g(n) of C, prices m(n), and ADRs for A, B and C. The actions and prices

are as follows.

v4(0) =0, wva(l) =0, v4(2) =0;
Q}B<0) :0, ’I)B(l) :0, 03(2) :0,
ua(0) =1, wa(l) =0, us(2) =0;
uB<0) :07 uB(1> :17 uB(2) :17
q(0) =25, ¢(1) =1, q¢(2) =3;
m(0) =20, w(1) =1, 7(2)=3;



Philpott,Ferris,Mays: Stochastic dispatch
Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!) 11

The ADR for A in node 0 is the expected future value of storage y4 at prices 1 and 3 is 1.8y,4, for
ya € [0,1]. Similarly the ADR for B in period 0 is 2.2yg, for yp € [0,1]. In nodes 1 and 2 the ADR
of each battery is assumed to be identically 0. The ADR for C in all nodes is also 0.

We now verify that this solution is an ADR partial equilibrium, by checking each of the three
conditions in the definition. First,

DP(0): min [ &(z)dz —1.8(1 —u4) — 2.2(1 — up)
g+us+ug>3.5 [7]
Up,UB € [Oa 1],(] >0

has optimal solution defined by thermal dispatch ¢(0) = 2.5, discharge u(0) =1, ug(0) =0, price
m = 2.0, so the solution satisfies condition (1). For node n =1 we have w(1) = 1, and marginal
cost of generation at net demand of 1 is $1/MWh. For node n =2 we have that 7(n) =3, and the
marginal cost of generation at net demand of 3 is $3/MWh. So thermal dispatch satisfies condition
(2). Each battery satisfies condition (2) also: ua(1) =wu4(2) =0 is the only feasible solution for A in
the second stage, and the action ug (1) = up(2) = 1 maximizes mup plus a zero future reward in each
node. Finally at time 0, for y4,yp € [0,1], R4 (y4) =1.8y4 and R%(yp) =2.2yp are easily shown to
be expected future rewards of batteries given prices and agent probabilities, so the solution satisfies
condition (3). O

It is not clear for a scenario tree 7 with demand {d"}, 7 that an ADR partial equilibrium will
always exist. If there are additional instruments that enable agents to speculate on future energy
prices then a necessary condition for the existence of an ADR partial equilibrium is that the agents
share a common probability distribution. This statement is a form of no-arbitrage condition that

is made precise as follows.

DEFINITION 2. An Arrow-Debreu security indexed on node m € T \ {0} is a financial instrument

acquired in predecessor node m— that pays $1 in node m.

ASSUMPTION 2. In each noden €T apart from leaf nodes, there is a complete market for Arrow-

Debreu securities indexed on each successor of n.

DEFINITION 3. A complete-market ADR partial equilibrium is an ADR partial equilibrium
together with a price u(m), m €T \ {0} and a set of trades W;(m) so that

0< > Wi(m) Lu(m) >0, meT\{0},

and in each node n each agent ¢ maximizes

()T Ay — (@) — Y pm)Wim)+ Y Py(m | n)Wi(m) + R, (x2)

men+ men+
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As we show in Example 1, it is not necessary for agents to share the same probability measure
in an ADR partial equilibrium. However Assumption 1 makes this a property of every complete-

market ADR partial equilibrium.

THEOREM 1. Suppose Assumption @ holds, and a set of prices {m*(n)}.er, agent actions
{z*(n)}ner, and ADRs {R} () }ner exists forming a complete-market ADR partial equilibrium.

i,z(n—)

Then P; is the same for each agent i € T.

Proof. Consider an arbitrary node n € T that is not a leaf node. Suppose p(m) is the price for
an Arrow-Debreu security indexed on m € n+. Suppose for some agent i P;(m) > p(m)P;(n). Then
agent 7 could make an infinite expected reward from buying infinitely many Arrow-Debreu securities
indexed on m. Thus P;(m) < u(m)P;(n). A similar argument shows that P;(m) > u(m)P;(n). Since
P;(0) =1, this shows that P;(m) =[],c p(,,y #(I) where P(m) is the set comprising m and the path
of nodes back to node 0, where we set 1(0) = 1. O

Theorem [1| assumes that all agents are risk neutral. It has a natural extension to agents endowed
with coherent risk measures, where the common probability distribution emerges from trading
Arrow-Debreu securities to yield a social coherent risk measure defining this distribution (see Ferris
and Philpott| (2022)).

Theorem [1| states that agents sharing the same probability distribution is a necessary condition
for a complete-market ADR partial equilibrium. In the next section we show that a common
probability distribution is a sufficient condition for existence of an ADR partial equilibrium, without
Assumption 1, but subject to an assumption on the separability of the subdifferential of a social

Bellman function.

4. Welfare theorems for ADRs

This section demonstrates the existence of an ADR equilibrium that solves the social optimiza-
tion problem. The idea underlying the construction is quite simple. We assume that agents have
access to all parameters defining the social optimization problem (including other agents’ costs and
capacities) and share the same probability distribution as the system operator. Agents then solve
the social optimization optimization problem, and construct their ADRs by decomposing the social
Bellman function. This decomposition requires some separability assumptions on the problem data
and constraint qualifications on the optimization problems to be solved, and its construction is

rather technical. The reader could skip this section without losing the thread of the paper.
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To simplify the argument, we focus first on a deterministic setting, and then show how the
construction extends naturally to a scenario tree. In the deterministic setting, recall the multiperiod

economic dispatch problem over T' periods, defined as follows:

SOP: min Y, (c*(x(t)) + LT 2(t))
s.t. Ax(t)+2(t) >d', t=1,2,...,T,

z(t) €[0,d"], =(t) e Xt
where X' = X(z(t — 1)) provides the linkage between periods. SOP can be solved by dynamic

programming. The stage problem at time t is
SSP(t): min c'(z)+ Lz + C*(x)

st. Az +z>d',  [n(b)],

z€[0,d'], xzeX"
Here 7(t) are the optimal Lagrange multipliers on the demand constraint, and C***(z) denotes an

optimal future cost incurred from the end of stage t if the action in stage t is the vector x.

AssuMPTION 3 (CQ). We assume throughout this section that ¢! and C* are convex functions
of x for every t with C*T(x) =0, that dom C" is the whole space, and ridomc' Nri X" ().

Suppose that a social planner, instead of solving SOP, solves a sequence of T" problems of the
form SSP(t). If C**'(x) is the true Bellman function then this solution will recover the optimal
solution of SOP. In the stage problem the system marginal cost is 7(¢), so under uniform pricing,
load should pay this price at the margin and generators should be paid at this price.

We would like to apply a Lagrangian argument to express the solution to SSP(t) as an ADR
partial equilibrium. In general, however, C**!(z) will not be separable into a sum of functions
> ez C (), which appears to make such an argument impossible.

However, to see when this is possible, consider a Lagrangian for SSP(t):
L(z,z,m)=c"(z)+ L 2z+C™(z)+ 7" (d' — Az — 2).

THEOREM 2. Suppose f(z):= c'(z) — 7" Ax + C**'(z) and Assumption [d holds. Then (z,z)
solves SSP(t) if and only if there is some 7 such that

0<Axr+z—d L7>0, (3)
0L —7+Npa(2), (4)

and
0€df(x)+ Nyt(x) (5)

hold, where Of(x) is the subdifferential of f at x, and Ny:(x) is the normal cone to X' at z. In

this case, x minimizes [ over x € X*.
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Proof. We just apply the saddlepoint optimality conditions. When is (z, z,7) a saddle point of
the Lagrangian L(x,z,7)? Clearly m maximizes L(z,z,m) over m > 0 is equivalent to . For the
minimization of the Lagrangian, observe that we can minimize over z separately, giving . This
means the remaining optimization seeks to minimize f over x € X'*. Assumption [3| guarantees that
x is optimal for this problem if and only if (5)) holds. But these conditions are equivalent to (x, z)
solving SSP(t). O

We wish to decompose by agent, and in this deterministic case we need the following sepa-

rability assumption:
ASSUMPTION 4. c'(z) =) . ci(x;) and X =], ;.

Since 0, ci(z;) =1, 0ct(z;) and Nx(z) =[], Nx,(x:), (5) is true if there exists a subgradient g(x)
of C*** at x with
Oénacf(x —m A+ g(x +HNX (z;).

Consider a fixed € X and let F(x) be any convex function of x. For each i € Z we define a
univariate conditional function F; ;  (x;) by replacing all components j of z except the ith by Z;.
Thus (using Z_; notation) we have F; ; . (z;) = F(z;,Z_;).

Now consider the conditional functions Cfiil(ml), i € Z, defined from the (social) optimal future
cost function C**'(z). For & € X" and 7 > 0 we define the agent stage problem:

Pi(m,): max (7 A), 1 — (@)l ()
s.t. z; € L.

The next result is used to show that if (z*,2*) solves SSP(¢) then there exists m such that each

component x;} will solve Pi(m, z* ).

PROPOSITION 1. Let m > 0 be given and Assumption |4 hold. If x* minimizes f(z) :=
Sieg i) — (7T A), i + C 1 (z) over x € X', then ) solves Pi(m,x*,).

i€L
Proof. Suppose z;} does not maximize (w' A), z; — ck(z;)— C’t+1 (L,) Then there is some Z; € X}
with
ci(@:) = (nTA), &+ CiLe (3) <ci(a]) — (v"A), 2] + CIL0 ().
It follows that
D (@) = (w7 A), 25) + () — (n T A), &+ C (&, 27 ,)
JET\{i}

< Y (@) - (xTA), @) +clal) - (7T A) @+ O (@)
JET\{i}

and (Z;,z*,) € X' which violates the optimality of z*. [
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We would like to establish a converse result that states that optimal solutions of P! will also
solve SSP(t) as long as the complementary slackness conditions and hold. This requires
a connection between the subdifferential of each C; .« . and the subdifferential of C. We have the

following result.

LEMMA 1. Letz € X. If g(2) = [g1(Z) ... gn(2)] T € DC(Z) then for eachi €I, g;(2) € OC; ;_, (&),
SO 80(‘%) C Hz 80,»,5;_2. (i‘l)

Proof. We have for any x

C(x) > C(2) +g(2) " (z — 1)
= C(%)+ Zgi(-%) (zi —24)
Thus
Cii_(z;) = C(zy,2)
> C(2) +g:(2) (2 — 24)
which gives the result. O

If C is differentiable everywhere then for each i, C;; . is also differentiable. This means that
0C;;_,(2;) is a singleton {g;(Z)} that defines the unique subgradient that comprises 0C(Z), so
0C(z)=11,0C; s _,(2;). Note also that if C' is separable C(x) =), fi(x;), then it also follows that
0C(z) =[], 0C; :_,(&;). Equality does not hold in general, since it is easy to find nonsmooth convex
functions C' where g;(2) € 0C; ;_,(&;) but ¢g(Z) ¢ 0C(z). See for example C(z,y) = |z —y| + |z +
y—2.

We can now establish the converse to Proposition

PROPOSITION 2. Let m >0, & € X' be given and suppose dC'™(x) = [[,.,0CIL! (x;) and
Assumptions @ and hold. If for each i € I, &; solves Pi(m,&_;) then & minimizes ), ,(ci(x;) —
(T A), z;) + C(x) over x € X,

Proof. If &; maximizes (7" A), x; — ci(x;) — C{L (2;) over x; € X! then &; minimizes cf(x;) —

(nTA),x;+ C{L (x;) over x; € X! so under Assumption
0€dc)(z;) — (x"A), +0CIE! (&) + N (&)
which under Assumption [4] gives
0e[Joci(@:) — ATr+0C" (&) + [ [ Nae (&)

implying the optimality of Z. O
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Propositions [1] and [2| can now be combined to give the following welfare therorems.

THEOREM 3. Suppose (z*,z*) solves SSP. If Assumptions@ cmd hold then there exists m such
that ¥ solves Pi(m,x* ), i €L.

Proof. By Theorem [2| there exists 7 such that , and hold. For this , and Propo-
sition [1| then implies that =} solves Pi(m, z* ). O

THEOREM 4. Suppose (Z,z,m) satisfy @ and , Assumptions @ a,nd hold and OC*(z) =
[T:cz OCiE! (). Then if &; solves Pi(m,2_;), i € T it follows that (Z,2) solves SSP(t).

Proof. 1If &; solves P;(m,&_;) then Proposition [2[ implies whereby the result follows from
Theorem [21 O

We can extend these theorems in a straightforward way to a setting in a scenario tree T with

demand {d"},c7 and probability measure P. This gives a stochastic formulation of SOP:

SSOP: min Y, _, P(n)(c"(z(n)) + LT 2(n))
st Y, Auai(n) +2(n) >d",  [x(n)], neT,
2(n)€[0,d"], neT,
zi(n) € Xi(z(n—)), neT\{0}.

The stochastic optimal dispatch problem can then be solved (in principle at least) in a recursive

fashion. The social planning stage problem at node n is now
SSP(n,Z): C™(Z) = min Y, ¢/ (x;)+ L 2+ . P(m|n)C™(x)
st. Yy, Az +2>dY, [m(n)],
z€[0,d"], x;€X":=X;(T).

where P(m |n) =P(m)/P(n), and the sum over m € n+ is assumed to be 0 when 7 is a leaf node of
7. Thus C™(z) denotes the minimum expected cost from the optimal policy implemented in node
n and all its successors when the incoming state is .

DEFINITION 4. C™(x) is gradient separable at &(n) if for every z,
oc™(x) = ocr,_ (z:)
ieT

where C7%_ (7;) = C™(x;,2_4(n)), i € T.

—1
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The deterministic analysis can be applied to SSP(n,z), but we assume now that every agent
shares the same probability distribution as the social planner. For £ € X and m > 0 we define the
agent stage problem
P!(m(n),2_;): max w(n)" Az, — () + S (x;)

s.t. x; € A,
where S7(z:) = =3, c,.. P(m|n)C%,_ (). Observe that P in this expression has no subscript i.

We also write complementary slackness conditions
0<Az(n)+z(n)—d" Ln(n)>0, neT, (6)

and

0eL—n(n)+Npan(2(n), neT. (7)
The following assumption extends Assumption [3] to every node in the scenario tree.

ASSUMPTION 5. For every n € T, ¢" and C™ are convex functions of x, domC" is the whole

space, Assumption |1 holds, and ridomc™ Nri X™ # (.

The same arguments as used in the proofs of Theorem [3] and Theorem [ yield the following

welfare theorems.

THEOREM 5. Suppose (z*(n),z*(n)),er solves SSOP, Assumption[5 holds, and we let S7(z;) =
= meny P(m | n)Cw (), i € L. Then there exist w(n) such that xj(n) solves P}(m,x*;), i € L.

THEOREM 6. Suppose (&(n),2(n),m(n)),er satisfy (6) and (1), Assumption [J holds, and for
every n € T\ {0}, C™(z) is gradient separable at &(n—), then if &; solves P;(m,%_;), i € T it follows
that (Z,2) solves SSOP.

Theorem [5] allows us to establish the existence of an ADR partial equilibrium. In this equilibrium
all agents assume the same probability distribution as the social planner and choose ADRs based

on the expected future cost functions of the social planner.

THEOREM 7. Suppose all agents have the same probability distribution P as the social plan-
ner and (x*(n),z*(n)),C™)ner solves SSOP, with each Bellman function C™ gradient separable at
z*(n—), n€ T\{0}. If S}(zi) = = et P(m [ n)CTs (23), i €T, and Assumptian@ holds, then

there ezists m*(n) so that (x*(n),7*(n),S’(:))ner is an ADR partial equilibrium.
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Proof. By Theorem|f]there exists 7*(n) satisfying (6) and (7) such that x (n) solves P} (z*,z*,),
i € I, where Sj'(z;) = = . P(m|n)Cl (x;). We show that {7*(n),z*(n), S} (-)}ner is an
ADR partial equilibrium, where S}'(-) takes the place of R}, (-) in the definition (since [P replaces
[P,). The second property of the definition is immediate by Theorem [5| The optimality conditions for
P} (m,2*,), i € T along with (6) and (7) show that *(n) solves DP(n,z*(n—)) with Bellman func-
tion ) .S and prices 7*(n). Finally since (z*(n),z*(n)),C"),e7 solves SSOP, and C™ is gradient
separable at x*(n—), and satisfies the system dynamic programming recursion at every n € 7 \ {0},
the definition of S!"(z;) ensures that it satisfies the third condition in the definition of an ADR

equilibrium. ]

5. Illustrative example
In this section we study a particular dispatch problem at a single node with a single generator and

one battery operator over a 24-hour period. The problem SOP becomes the example problem

EP: min » _ (c'(q(t)) + L2(t))

=1

st q(t) +u(t) —v(t) +2(t) > d',
q(0)=¢°, q(t) € Q(q(t — 1)),
yi(0) =9 (:i(t),u(t),v(t)) € Y(y(t —1)),
2(t)e[0,df], t=1,2,...,24,

where

9(7) = {q|0<q< g™, q—q<p}, (8)

V(@) ={yu,v) | 0<y<E0<u<r0<v<sy=y—utnu}. (9)

Here ¢(t) denotes generation dispatched in period ¢, and y(t) is storage of energy in the battery
at the end of period t. These variables have initial values ¢° and 3" at the start of the day. The
dispatch ¢(t) is constrained by a ramp-up limit p and capacity ¢™** and incurs a cost of ¢'(q(t)).
Battery storage is increased by charging using variable v and decreased by discharging an amount
u. Round trip losses are modeled using the factor 7, which multiplies v. Charging and discharging
rates are limited by the parameters s and r respectively, and the battery has a maximum charge F.
The total amount generated should meet demand d’. Any shortfalls z(¢) are penalized at a value
of lost load L.

In the example, the generator has an increasing marginal cost with ten steps defined by Table

The values chosen for the other parameters are given in Table [2| Meeting the duck-curve shaped
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energy tranche (MWh) |5.0 [5.0 [5.0 |[5.0 [5.0 |5.0 [10.0]10.0 |10.0 |10.0
marginal cost ($/MWh) | 10.0 | 20.0 | 30.0 | 40.0 | 50.0 | 70.0 | 90.0 { 110.0 | 150.0 | 200.0

Table 1 Marginal cost of generator

¢ =700 E=30.0|n=10
r=15.0 s =15.0 | p=10.0
L =1000.0 |¢" =35.0|y" = 0.0

Table 2 Parameter values for example

80

demand

1 2 3 a 5 6 7 8 9 10 11 12 13 14 15 16 17 18 13 20 21 22 23 24

Figure 1  Values of d' for t =1,2,...,24.

demand in our model will require the generator to ramp up in periods 14 to 18 and the battery to
discharge in periods 19 through 21.

We first solve the perfect foresight model EP where the demand is known ex-ante for all ¢ =
1,2,...,24. Given perfect foresight, the model can be solved as a deterministic linear program
covering all 24 hours of operations. The optimal solution to EP has cost $48,470, with optimal
dispatch and battery charge shown in Figure

The problem EP can alternatively be considered as a discrete-time optimal control problem. It

can be solved using dynamic programming using the recursion:

F=q(t=1),y(t—1)) = min c*(q) + Lz + F*(q,y)
st. atu—v+z>d,
(y,u,v) € y(y(t - 1))’
z €10,d'],
where F**(q,y) =0 and ¢(0) =¢°, y(0) =¢°.
This yields future cost functions F*' that can be used to solve the sequence of optimization

problems DP(1,4(0),y(0)), DP(2,¢(1),y(1)), ..., DP(24,¢(23),y(23)) where ¢(0) and y(0) are given
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30
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Figure 2 Solution of DP showing generation x superimposed on demand, and battery net input v — u for
t=1,2,...,24.

and F' is substituted directly into DP. (Here we use the notation F' to denote a deterministic
future cost function.) These problems involve no explicit lookahead forecasts, but when solved in
sequence they replicate the socially optimal dispatch obtained by directly solving EP.

In practice, the system operator does not have perfect foresight. The system operator could
estimate the parameters of a stochastic process of future demand (and other parameters) and use
these to approximate an expected future cost function denoted C*(q,y). This is the approach fol-
lowed by the system operator to evaluate the expected future value of stored water in the Brazilian
electricity system (Diniz et al.[2018). The value is based on a centrally determined stochastic model
of inflows, and does not explicitly incorporate differing views of market participants.

Experiment 1

The example above can be extended to accommodate uncertainty in demand by adding indepen-
dent equally likely noise terms chosen from {—4,—2,0,2,4} at each ¢ to the demand in Figure
We then solve the system optimization problem using stochastic dynamic programming (SDP)
and extract expected future cost functions C*(q,y) at each stage. The SDP solution has optimal
expected cost of C*(¢°,y") = $52,377. This is the socially optimal solution for a perfectly compet-
itive equilibrium where every agent shares the same probability distribution of future demand.

We can investigate alternative agent policies by simulation. In all simulations we use 10,000
sample paths with common random numbers. Recall that the perfect foresight solution gives a cost
of $48,470 in the deterministic case. Simulating the policy defined by the deterministic future cost
functions F* with the noisy demand defined above yields an estimated expected cost of $54,255
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with standard error $57. By contrast, simulating the socially optimal solution computed using SDP
gives an expected cost of $52,406 with standard error $50.

As discussed above, we propose that market participants provide ADRs defined by their own
future reward functions. These could be provided in real time at the start of each period, or be
long-lived over many future trading periods. Here we investigate the latter option in the example
problem, where at the start of the day the generator agent provides functions S} (q), t =1,2,...,24
and the battery operator provides functions Sf(y), t =1,2,...,24, and then the system operator
solves DP(1,¢(0),y(0)), DP(2,q(1),y(1)), ..., DP(24,¢(23),y(23)) using

C'(q,y) = =S (q) — Sy (y).

First, suppose that each agent solves the deterministic system problem with expected demand
and computes the generation ¢(t) and finishing storage ¢(t) for each interval t as well as the
deterministic future cost function F'(q,y). The agents then compute univariate value functions
Fi(q) = F"'(q,9(t)) and F{(y) = F"*(4(t),y) respectively, with each assuming that the other agent
follows the socially optimal dispatch from the deterministic case. The system operator then solves

DP(1,4(0),y(0)), DP(2,q(1),y(1)), ..., DP(24,¢(23),y(23)) using
F'(q,y) = Fy(q) + Fy(y).

Using the data in the above example, this approach gave ADRs for each agent which yielded a
social cost of $48,470 when simulated in the perfect foresight scenario, the same as the deterministic
social optimum as predicted by Theorem {4} Simulating these ADRs with noise added to demand
yielded an estimated expected social cost of $55,430 (standard error $76). This turns out to be
worse than the $54,255 obtained by simulating with the function F*(q,y) rather than the separable
ADRs that approximate F*(q,y). In other words, when the system operator and the agents all
use a deterministic simplification to compute future cost functions, there is an advantage to the
centralized solution. Observe that this need not be the case in general, as F'(q,y) is itself an
approximation of the true social cost function C*(§(t),y).

Second, suppose that the agents are more sophisticated and solve the stochastic social planning
problem to yield C*(q,y). Each agent then computes respective univariate value functions C(q) =
C'(q,9(t)), and Ci(y) = C*(4(t),y), using ¢(¢) and finishing storage §(¢) from the deterministic
problem solved with expected demand. In the example, this approach gave ADRs for each agent
which yielded an estimated social cost of $52,688 (standard error $55) when simulated with 10,000
sample paths. This compares well with the social optimum policy that yields $52,406. With that
said, these ADRs have higher cost since they are constructed to approximate C*(q,y) only at those

values visited in the deterministic solution.
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In order to recover the example’s socially optimal solution using ADRs, we would need to supply
a value function for each agent at each stage that varies with the noise outcome in that stage, and
history of dispatch up to that point. At each stage ¢, when presented with noise outcome w, the
agent g would provide the system operator with S/ (¢) = —C"*'(q,9(t,w)), and the agent b would
provide the system operator with S;™'(y) = —C*1(4(t,w), y), where (4(t,w),§(t,w)) is the state at
the end of period t in scenario w when the social optimal policy is applied. The ADR in this case is
provided in real time at the beginning of each trading period, assuming knowledge of the demand
in that period. If each participant’s ADR for all periods must be supplied to the system operator
at the beginning of the day, then to recover system optimality a univariate function S(q) would
need to be specified at each t for all possible g(t) values, along with a univariate function Sf(y)
specified at each ¢ for all possible §(t) values.

The expected cost resulting from the four simulated policies is summarized in Table [3

Dispatch Input
Separable ADRs Social Cost-to-Go
Deterministic $55,430 $54,255
Stochastic $52,688 $52,406

Table 3 Expected cost under simulated policies

Cost Function Estimate

Experiment 2

We repeated the above experiment with different noise terms added to the demand outcomes.
The noise terms are now chosen from {-4, -2, 0, 8, 16} with probabilities {0.2, 0.2, 0.5, 0.05, 0.05}
which gives the same mean demand but higher variance. The optimal policy now has an expected
cost of $57,438. Simulation with 10000 sample paths gives an estimated expected cost of this policy
equal to $57,506 (standard error 102)

The solution for this example in the deterministic case is identical to that of Experiment 1,
yielding a social cost of $48,470. Simulating the deterministic dynamic programming policy com-
puted assuming deterministic demand with 10000 (high variance) sample paths gives an estimated
expected cost equal to $60,984 (standard error 112).

Simulating the (separated) ADRs derived from the deterministic dynamic programming pol-
icy with 10000 (high variance) sample paths gives an estimated expected cost equal to $63,895
(standard error 126).

Finally we simulate the ADRs derived from the stochastic Bellman functions evaluated at §(t)
and g(t) values obtained by the perfect foresight problem (solved with expected demand). Simu-
lating these ADRs with 10000 (high variance) sample paths gives an estimated expected cost equal
to $59,409 (standard error 105). As such, the rank ordering of the four tested policies is the same
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in example 2 as it was in example 1. However, the higher variance in demand as compared with
example 1 has increased the difference in cost between the ADR policy and the socially optimal

policy.

6. Further examples

The ADRs we used in the example deal with battery storage and ramping generation when these
technologies are operated by different agents. A straightforward extension would consider some
agents having a mix of technologies and future value functions that depend on the states of each.

In this section we discuss other settings in which ADRs might play a role.

6.1. Classical bids as agent decision rules

Classical offer curves (i.e., supply functions) are a special case of an ADR, but typically do not
add any more state-dependent information than is currently available in a conventional dispatch
mechanism. In this limited case, the rule consists of data pairs (¢;, g;) describing the supply function.
The ADR is specified by the immediate cost data ¢; and the parameterized set X; defined in .
In this case both p; and o; are infinite (no explicit ramping constraints) and capacities are given
by ¢™**. To construct a more nuanced ADR, a generator might have a forecast of future electricity
prices as a function of current observations and define offer curves that depend on these forecasts.

An ADR defined for period ¢ cannot depend arbitrarily on the observed price 7(¢) in period t.
To illustrate this, consider a simple form of ADR defined by a supply function offered to a single
node convex dispatch model without ramping constraints. Such a function will yield a dispatch
of plant with marginal costs below the computed system marginal price, without specifying this
price explicitly in the supply curve. The form of dependence of dispatch on the observed price
m(t) in period t is restricted by the convexity of the dispatch problem. To be clear, an ADR that
dispatched 10 units if 7 (¢) € [0,50] and 5 units if 7(¢) € [50,100] would not be acceptable in our
framework.

Demand response (also known as peak shaving) refers to demand that is decreased when prices
are high. When this is “behind the meter” it must be treated as a variation in net demand by the
dispatcher who must use a forecast. On the other hand it can be offered as a demand-side bid to
a dispatch model and dispatched by the system operator. This is modelled in dispatch problems
using a nonincreasing inverse demand curve that specifies the price in period ¢ when the quantity
demanded is z. Demand curves for each consumer can be submitted to the system operator and
summed to give a system demand curve for use in a conventional dispatch model (see above).

Demand response can make use of ADRs when electricity is used to make a product that is

stored for later sale. In this case, the demand curve offered to the market might depend on the
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state of storage of the product. When storage is low the demand curve will buy more at each price

to replenish stock, and when it is high the demand curve will buy less.

6.2. ADRs for pump-storage hydro plants
Pump-storage hydro plants release water from a reservoir through turbines in peak periods when
prices are high, and then refill the reservoir by pumping water uphill when prices are low. These

facilities can be optimized using the same ADRs as batteries, possibly over a longer time scale.

6.3. ADRs for flexible demand

Instead of just reducing load, some industrial loads (or even data centers) can shift demand from
peak periods to off-peak periods. This flexible demand can be offered to wholesale markets using
ADRs. If the industry has a battery or some other mechanism to store energy then the ADR
takes a similar form to those for battery storage. This extends to settings where products that use
electricity can be stored for later sale.

The use of electricity for a particular task can be deferred from a high price period until later
when prices are lower. If the task has to be completed by the end of the time horizon then the
shifting of load can be optimized using an ADR. The variable x(t) = (y(t),v(t)) where the state
y;(t) is the proportion of task j that has been completed, and v,(t) denotes the electricity consumed
by task j in period ¢ where the task requires 7, units of energy. We have

Y5 () = i (t = 1) +v;(t) /15,
and the ADR uses a future cost function —W;(y;) that is zero when y; = 1.

6.4. ADRs for hydroelectric generators
Although not represented explicitly in our formulation, a decision rule could be defined for hydro-
electric generators who release water from reservoirs to generate electricity, and replenish the
reservoir contents with (stochastic) inflows. Hydroelectric generators price the release of water by
estimating the expected marginal water value, which represents the expected opportunity cost of
releasing water now rather than in the future. This cost can be viewed as the derivative of a function
Wi(y;) of the same form used to express the future value for batteries. This enables hydroelectric
generators to offer decision rules to the system operator as if they were a battery operator.

There is a range of models that can be used to dispatch hydroelectric generators. An isolated
reservoir with no inter-temporal constraints can compute an expected marginal water value through
dynamic programming. This can be used by the system operator to dispatch the hydro plant effi-

ciently. When hydroelectric stations are located at different points on a river network the marginal
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water value will vary with time and location. Indeed these values will be Lagrange multipliers
to flow balance constraints in a complicated multiperiod optimization problem. In principle, the
system operator can use these as a guide to dispatch each station in the river system.

An alternative model cedes control of the hydroelectric river system to the electricity system
operator who solves a lookahead problem. The river constraints are incorporated into the dispatch
model (like transmission constraints) which is optimized by the system operator accounting for all
water released from storage over the time horizon using an end-of-horizon future value function
W/ (y;). This hydro-enhanced dispatch model requires a forecast of demand to inform some form

of lookahead in the dispatch model.

6.5. ADRSs for reserve
Electricity generators and batteries can assign part of their capacity for reserve, and be paid a
price for this. This can be incorporated into an ADR dispatch model. The exact form of this model
depends on how reserve is defined. We outline a simple model where reserve is spare generation
capacity made available in each period by generators to deal with contingencies in that period only.
(The model for reserve being offered by batteries is similar.)

Suppose the amount of reserve required in period ¢ is d"(t), and at the start of period t the
generation levels are ¢ and the battery charge levels are 3. Suppose that generator i € G is dispatched
q; of reserve at cost g;. The security-constrained dispatch model allows available generation to be

split into immediate demand satisfaction and reserve requirements.

SCDP(t,2):min Y _ (ci(q:) +gi(q})) + Lz — ZR?(:Q),

i€g
sty g =d(t),
i€g
Doa+Y =y vit+z>d(t),
icg jeg ieg

(¢:,q7) € Qi(@), i€G
(Yj,us,v5) € Vi), €T
2(t) €[0,d(t)],

where

Qi(@)={(¢,4")10<q+q" <¢"q+q¢" — @ < pi, G —q—q" <03},
yj(gj):{(y,u,?})‘0SySEj,OS’UJSTJ',OS’USS]‘,Z/::U].—’U,—FT]J»U}-

The definition of QZ((L) can include extra constraints on ¢” that depend on each generator’s plant.

Some care is needed in defining the expected future cost.
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6.6. ADRSs for frequency regulation

Batteries can assign part of their capacity for frequency regulation, and be paid a price for this.
Suppose in period ¢ that the total amount of battery capacity required for frequency regulation
is F'(t). At time ¢ each battery operator j offers some capacity k; MW at a price of ¢; dollars
per MW. The amount of frequency regulation they are dispatched is f;, which requires them to
allocate some of their battery storage to this task. Regulating the frequency involves charging and
discharging which consumes energy because of round-trip losses. Suppose this energy is 9, f;.

The frequency regulating dispatch model is as follows.

FRDP(t, Z): min Zci(qi) + Zgoj(t)fj + LTz +C'(x),

1€G €T
sty f; =2 F(t),
JjET
Z%Jrzuj —Zvj +2z>d(t),
1€g JjeT JjeT

Qieéi(@'), i€~g,
(Ys,uj,v5, ) € Vi(;), €T,
2(t) €0,d(t)],

where
Qi(@) ={q|10<q<q¢™, q— G <pi, & —q<0i},

V() = {(, w0, f) |0<y<E;, 0<u<r;, 0<v<s;,
0< f<Ekj, y=y;—u—1;f+nv}

7. Conclusions

In this paper we have described a new electricity dispatch and pricing model based on agent
decision rules (ADRs). We have demonstrated how ADRs can be used in storage, ramping, reserve
and frequency regulation. This model has the advantage of dealing with uncertainty in future
net demand for electricity without requiring the system operator to make forecasts or estimate
probability distributions. The individual views of the future taken by market participants are
incorporated into their ADRs and aggregated by the system operator in making the current period’s
dispatch.

In practice a market participant could devise their ADR to account for their attitude to risk
and possible trades in derivative contracts. As long as the ADR gives convex future cost functions
it can be easily handled in the formulation DP. Although our analysis in Section [4] focuses on the
expected efficiency of ADR dispatch in a risk-neutral setting, a similar analysis could be performed
when agents are risk-averse and endowed with coherent risk measures and markets for risk are

complete. As shown by [Ferris and Philpott (2022)), a risked competitive equilibrium in a scenario
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tree is equivalent to a risk-averse solution to a system optimization, using a coherent risk measure
derived from those of the agents. This gives similar results to Theorems [5] and [6] as long as the
system risked future cost function can be separated into the sum of agent functions.

The welfare results we derive assume that ADRs can be derived and submitted to the system
operator in real time at the beginning of a dispatch interval (typically five minutes) when the
incoming states of all agents are known. Gate-closure conditions that preclude changes in offer
in a given period (typically more than an hour) before dispatch make this impossible in practice.
Long-lived ADR offers that are contingent on all possible dispatch histories during the gate closure
period could be shown to yield the socially optimal solution in theory but are not realistic in any
practical setting. Nevertheless a single ADR that is contingent on the state of a battery or ramping
plant can persist over several consecutive dispatch periods to guide the system operator, who may
either solve a sequence of one-period problems with the ADR in each, or in case a reliable forecast
is available, solve a deterministic problem over T periods with the ADR guiding the outgoing state
in period T. We see experimentation to quantify any efficiency gains in such long-lived ADRs as a
fruitful area for further research.

Our analysis has not dwelt on how agents should generate their ADRs. The example we have
presented has a social planning problem with two state variables, making it amenable to solution
by dynamic programming. In most applications these future cost functions will have higher state
dimension and not be separable by agent at every stage. An approximate dynamic programming
method such as SDDP (Pereira and Pinto|1991) might then be required to generate suitable ADRs.
Even so, some battery operators will find the effort required to compute an optimal ADR too much.
However, there is nothing in our proposed dispatch process precluding them from using heuristic
rules to specify their ADR, e.g., a collection of buy and sell prices that are parameterized by their
state of charge.

Throughout this paper we have assumed a convex dispatch process. In many electricity markets
the dispatch involves the start-up and shut-down of generating units with minimum operating
levels and minimum up and down times. These are modeled using binary variables in multi-period
mixed-integer programs. Deriving suitable prices from these models remains a challenge. Further-
more constructing ADRs for such problems is not straightforward, although extensions of SDDP
to incorporate binary variables (Zou et al.|2019, [Philpott et al.|2020) can be used to construct

approximate future cost functions to use as a guide for deriving good ADRs.

Acknowledgments

This research was performed while the authors were participating in the Architecture of Green Energy Sys-
tems Program hosted by the Institute for Mathematical and Statistical Innovation (IMSI), which is supported
by the National Science Foundation (Grant No. DMS-1929348). Andy Philpott acknowledges support from
UOCX2117 MBIE Catalyst Fund New Zealand German Platform for Green Hydrogen Integration (HINT).



Philpott,Ferris,Mays: Stochastic dispatch
28 Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!)

References
Alyagari S (1994) Uninsured idiosyncratic risk and aggregate saving. The Quarterly Journal of Economics

109(3):659-684.

Brown D, Smith J (2025) Unit commitment without commitment: A dynamic programming approach for

managing an integrated energy system under uncertainty. Operations Research .

Chen C, Tong L (2023) Convexifying market clearing of soc-dependent bids from merchant storage partic-
ipants. IEEE Transactions on Power Systems 38(3):2955-2957, URL http://dx.doi.org/10.1109/
TPWRS.2023.3242470.

Cho J, Papavasiliou A (2023) Pricing under uncertainty in multi-interval real-time markets. Operations

Research 71(6):1928-1942, URL http://dx.doi.org/10.1287/opre.2022.2314.

Cory-Wright R, Philpott A, Zakeri G (2018) Payment mechanisms for electricity markets with uncertain
supply. Operations Research Letters 46(1):116-121, ISSN 0167-6377, URL http://dx.doi.org/https:
//doi.org/10.1016/j.0r1.2017.11.017.

Department of Market Monitoring (2024) 2023 special report on battery storage. Technical report, California
ISO.

Diniz AL, Costa F, Maceira T MEand dos Santos, Dos Santos L, Cabral R (2018) Short/mid-term hydrother-
mal dispatch and spot pricing for large-scale systems-the case of brazil. 2018 Power Systems Compu-

tation Conference (PSCC), 1-7 (IEEE).

Eldridge B, Knueven B, Mays J (2023a) Rethinking the price formation problempart 1: Participant incentives
under uncertainty. IEEE Transactions on Energy Markets, Policy and Regulation 1(4):480-489, URL
http://dx.doi.org/10.1109/TEMPR.2023.3315956.

Eldridge B, Knueven B, Mays J (2023b) Rethinking the price formation problempart 2: Rewarding flexibility
and managing price risk. IEEE Transactions on Energy Markets, Policy and Regulation 1(4):490-498,
URL http://dx.doi.org/10.1109/TEMPR.2023.3315953,

Ferris M, Philpott A (2022) Dynamic risked equilibrium. Operations Research 70(3):1933-1952.

Gomes D, Mohr J, Souza R (2010) Discrete time, finite state space mean field games. Journal de
mathématiques pures et appliquées 93(3):308-328.

Hobbs B (2001) The next generation of electric power unit commitment models, volume 36 (Springer Science

& Business Media).

Hogan W (2016) Electricity market design. Workshop on Optimization and Equilibrium in Energy Economics,
Institute for Pure and Applied Mathematics (IPAM), University of Southern California, Los Angeles.

January, volume 13.

Hua B, Schiro D, Zheng T, Baldick R, Litvinov E (2019) Pricing in multi-interval real-time markets. [EEE
Transactions on Power systems 34(4):2696-2705.


http://dx.doi.org/10.1109/TPWRS.2023.3242470
http://dx.doi.org/10.1109/TPWRS.2023.3242470
http://dx.doi.org/10.1287/opre.2022.2314
http://dx.doi.org/https://doi.org/10.1016/j.orl.2017.11.017
http://dx.doi.org/https://doi.org/10.1016/j.orl.2017.11.017
http://dx.doi.org/10.1109/TEMPR.2023.3315956
http://dx.doi.org/10.1109/TEMPR.2023.3315953

Philpott,Ferris,Mays: Stochastic dispatch
Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!) 29

Lasry JM, Lions PL (2007) Mean field games. Japanese journal of mathematics 2(1):229-260.

Li T, Shahidehpour M (2005) Price-based unit commitment: A case of Lagrangian relaxation versus mixed

integer programming. IEEFE transactions on power systems 20(4):2015-2025.

Lucas Jr R, Prescott E (1971) Investment under uncertainty. Econometrica: Journal of the Econometric

Society 659-681.

Mays J (2024) Sequential pricing of electricity. Energy Economics 137:107790, ISSN 0140-9883, URL http:
//dx.doi.org/https://doi.org/10.1016/j.eneco.2024.107790.

Muckstadt J, Koenig S (1977) An application of Lagrangian relaxation to scheduling in power-generation

systems. Operations Research 25(3):387-403.

Nelson T, Conboy P, Hancock A, Hirschhorn P (2025) National Electricity Market wholesale market
settings review, https://www.dcceew.gov.au/energy /markets /nem-wms-review. Technical report, Aus-

tralian Government: Department of Climate Change, Energy, Environment and Water.

Pereira M, Pinto L (1991) Multi-stage stochastic optimization applied to energy planning. Mathematical
Programming 52(1):359-375.

Philpott A, Wahid F, Bonnans J (2020) Midas: A mixed integer dynamic approximation scheme. Mathemat-
ical Programming 181(1):19-50.

Prescott E, Mehra R (2005) Recursive competitive equilibrium: The case of homogeneous households. Theory

Of Valuation, 357-371 (World Scientific).

Pritchard G, Zakeri G, Philpott A (2010) A single-settlement, energy-only electric power market for
unpredictable and intermittent participants. Operations Research 58(4-part-2):1210-1219, URL http:
//dx.doi.org/10.1287/opre.1090.0800.

Zakeri G, Pritchard G, Bjorndal M, Bjorndal E (2019) Pricing wind: A revenue adequate, cost recover-
ing uniform price auction for electricity markets with intermittent generation. INFORMS Journal on

Optimization 1(1):35-48, URL http://dx.doi.org/10.1287/1ij00.2018.0002.

Zavala V, Kim K, Anitescu M, Birge J (2017) A stochastic electricity market clearing formulation with
consistent pricing properties. Operations Research 65(3):557-576, URL http://dx.doi.org/10.1287/
opre.2016.1576.

Zheng N, Qin X, Wu D, Murtaugh G, Xu B (2023) Energy storage state-of-charge market model. IFEE
Transactions on Energy Markets, Policy and Regulation 1(1):11-22, URL http://dx.doi.org/10.
1109/TEMPR.2023.3238135.

Zou J, Ahmed S, Sun X (2019) Stochastic dual dynamic integer programming. Mathematical Programming
175:461-502.


http://dx.doi.org/https://doi.org/10.1016/j.eneco.2024.107790
http://dx.doi.org/https://doi.org/10.1016/j.eneco.2024.107790
http://dx.doi.org/10.1287/opre.1090.0800
http://dx.doi.org/10.1287/opre.1090.0800
http://dx.doi.org/10.1287/ijoo.2018.0002
http://dx.doi.org/10.1287/opre.2016.1576
http://dx.doi.org/10.1287/opre.2016.1576
http://dx.doi.org/10.1109/TEMPR.2023.3238135
http://dx.doi.org/10.1109/TEMPR.2023.3238135

	EPOCTitlePage
	EPOCPaperADRs

