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Abstract

Models for computing dispatch and prices in wholesale electricity mar-
ket pools are typically deterministic multiperiod mathematical programs
that are solved in a rolling horizon fashion. In convex settings with per-
fect foresight these optimization problems yield dispatch outcomes and
locational marginal prices that solve a competitive equilibrium problem.
The use of these models in practice is challenging for several reasons, par-
ticularly in the context of increased uncertainty resulting from growing
investment in renewable energy. Deterministic models can miscalibrate
the value of holding energy in storage or positioning the system to meet
future ramping constraints, leading to ineffi cient dispatch decisions. Pric-
ing outcomes from the models are dependent on the point forecasts used
as inputs, leading to ineffi cient remuneration and uplift payments that
compensate participants for the fact that the system operator forecasts
the future incorrectly. To address these challenges, researchers and prac-
titioners have proposed a variety of model enhancements (e.g., the use
of longer lookahead periods or the implementation of stochastic program-
ming models using scenario trees) that increase the computational and
informational demands placed on the system operator. We present a class
of new economic dispatch models that instead attempt to overcome these
drawbacks through the use of agent decision rules. Forecasting future
outcomes or scenarios passes from the system operator to market partici-
pants, who implicitly make state-dependent offers of energy through these
decision rules. We show how storage and ramping can be priced correctly
in convex markets and illustrate the advantages of the approach through
simple examples.
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1. Introduction

Wholesale electricity markets across the world are confronting challenges brought by a rapid

transition away from traditional technologies toward solar, wind, storage, and distributed energy

resources. As increasing numbers of batteries and flexible loads shift consumption “behind the

meter”, market operators face greater uncertainty in net demand. This challenge has become par-

ticularly acute in jurisdictions with high renewable penetration, such as Australia (Nelson et al.

2025).

Growth in renewable supply has motivated a great deal of research investigating improved

algorithmic approaches for managing uncertainty and for coordinating storage and distributed

resources, e.g., through stochastic or robust optimization. To date, however, real-world systems

have stopped short of an explicit treatment of uncertainty in algorithms used for unit commitment,

economic dispatch, and price formation. An alternative to purely operator-managed uncertainty is

to enable batteries and other flexible devices (often through aggregators) to participate directly in

wholesale dispatch and pricing mechanisms by submitting supply and demand bids. Such participa-

tion can increase market efficiency by coordinating these bids with other dispatchable services, such

as peaking plant. To improve the participation of load-shifting and ramping services, market oper-

ators have implemented a variety of market design adaptations, such as new market participation

models for batteries and new ancillary service products for ramping.

In this paper we consider alternative ways to incorporate stochastic elements in short-term elec-

tricity market design and propose a change in the format of bids and offers supplied by market

participants. In current practice, market operators rely on a series of deterministic lookahead mod-

els solved in a rolling horizon fashion, taking bids and offers from market participants as an input

into the models. This approach leads to three potential issues. First, the use of a deterministic

formulation may lead to suboptimal decisions and inefficient prices within the lookahead horizon.

Second, the use of a finite lookahead horizon can lead to myopic decisions that fail to prepare

the system for operations beyond that horizon. Third, the parameterization of lookahead models

requires the system operator to make decisions (e.g., regarding demand forecasts) that can mean-

ingfully affect prices, with unclear consequences for efficiency in both short-run operations and

long-run investment. With these three issues in mind, the goal of this paper is to shift auctions

away from the conceptual framework of model predictive control toward that of dynamic program-

ming. In place of classical price–quantity pairs, our proposal aims to enable market participants to

submit offers that amount to Agent Decision Rules (ADRs) that can be adapted to any scenario

that arises. In a dynamic setting, decisions depend not just on the profits earned in a given interval,

but also on a value function reflecting the future benefit of being in a different state at the end of

that interval. The classical supply functions used in current formulations for commitment, dispatch,
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and market clearing do not include a direct way of expressing this value function. Effectively, the

current format embeds an assumption that future benefits will be unrelated to the state transition

that results from current decisions. While such an assumption may have been reasonable in the

past, when intertemporal constraints were less of a concern for operators, it is increasingly suspect

given issues with ramping constraints and battery state-of-charge limits.

Rather than relying primarily on the system operator, the ADR approach to uncertainty man-

agement depends on market participants to develop their own view on future uncertainty and

incorporate it in their bids and offers. As such, the proposal reflects a continuation of debates

about the split of responsibilities between market participants and the market operator that have

been ongoing since the introduction of competition. Some markets, such as in New Zealand and

most of Australia, rely on self-commitment of thermal generators, while others, including most of

the U.S., rely on central commitment. Some markets, like in Alberta, rely purely on participant

offers, while others, like much of South America, rely on costs estimated by the system operator.

Still others, as in the U.S., rely on a complicated mix of these, with participant offers replaced

by cost-based offers in cases of significant market power. In other words, while sharing common

theoretical underpinnings, competitive markets in different jurisdictions have evolved in very dif-

ferent directions to accommodate their specific technological and regulatory contexts. In the U.S.

context, growth of wind and solar has led many to argue for a more centralized approach. The

California Independent System Operator (CAISO), for example, describes its operational issues as

stemming from “the challenges of having a limited optimization horizon,” indicating a desire to

extend its modeled lookahead horizon further into the future if computationally feasible (Depart-

ment of Market Monitoring 2024). Our analysis instead suggests a clean division of responsibility

at the frequency of market clearing (e.g., 5 minutes in U.S. markets), with the market operator

solving a single-period economic dispatch model to generate prices that balance projected supply

and demand in each interval but employing control mechanisms to ensure more precise balancing

within the interval. At the same time, the analysis enables insight into the conditions under which

a more operator-driven approach to managing uncertainty across market-clearing intervals may be

required.

In an idealized setting with a fully specified scenario tree, a socially optimal schedule for dis-

patch under uncertainty can be determined through stochastic programming. This observation

has motivated many studies examining the use of stochastic programming in dispatch and market

clearing, primarily examining simpler two-stage models (see, e.g., Pritchard et al. (2010), Zavala

et al. (2017), Cory-Wright et al. (2018), Zakeri et al. (2019)). Rolling horizon models implement

the dispatch from the current period and re-optimize the model with a new scenario tree starting in

the next period. The prices generated by these models support the schedules that would be chosen
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by profit-maximizing market participants, as long as agents are risk neutral and agree on the prob-

abilities attached to each scenario. With assumptions enabling complete trading in risk, this result

can be extended to situations with risk aversion (Ferris and Philpott 2022). While moving from

current deterministic formulations to stochastic programming could improve the management of

uncertainty within the lookahead horizon, it would not address the issues of myopia and conflict-

ing beliefs noted above. Given that the implementation of stochastic programming would require

simplifications from the full scenario tree, a key question is how the market operator would choose

scenarios for use in the model. The construction of scenarios could have meaningful effects on the

prices ultimately formed, leading to divergence between the schedule determined by the market

operator and the ones preferred by individual agents (Mays 2024).

Issues connected to dispatch under uncertainty have led to ongoing evolution in the participation

models used by batteries in U.S. markets. Given its early deployment of significant battery capacity,

discussions of new participation models are most active in CAISO, which employs a deterministic

lookahead economic dispatch model in real-time market clearing that extends two hours into the

future. In CAISO, gate closure occurs 75 minutes in advance of each operating hour and offers

must be constant through an operating hour. From a dynamic programming standpoint, efficiency-

maximizing offers in later periods of the lookahead horizon should depend on decisions made earlier

in the horizon. Typically, it can be expected that the residual value of energy stored in a battery

will increase as the battery gets closer to being empty. The current rules introduce inefficiency into

the dispatch in two ways. First, due to gate closure, the battery operator does not know what its

state of charge will be at the beginning of the operating hour and so is not able to match its offer to

its estimate of residual value. Second, if the battery offers a set of constant price–quantity pairs for

the hour, the market clearing engine can select the cheapest segment of the curve in each 5-minute

interval rather than moving up the residual value curve as the battery is discharged. In response to

these issues, CAISO is contemplating changes that would allow state-of-charge-dependent battery

offers but would introduce non-convexity to the otherwise convex economic dispatch (Zheng et al.

2023, Chen and Tong 2023). In principle, the ADR-based approach advanced in this paper would

enable offers to depend on state of charge and avoid issues with gate closure without introducing

non-convexity.

In addition to changes to participation models, several authors have proposed to resolve issues

with mismatched incentives by modifying price formation in a way that mitigates the potential for

market participant losses. Here the issue is that energy prices in the first period of each lookahead

model solution are binding for settlement, whereas the remaining prices are only provisional. The

lookahead model may hold energy in a battery or pre-position a ramp-constrained generator in

anticipation of higher future prices, even if the market participant does not believe that such
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high prices will arise. More generally, the sequence of prices generated in a rolling horizon fashion

with lookahead models relying on forecasts often turn out to be different ex-post from the prices

that would be obtained from solving a perfect foresight model with the observed values of the

parameters. This results in a so-called lost opportunity cost faced by market participants who would

have acted differently from their dispatched quantities if they had known the prices in advance. U.S.

markets use side payments to encourage compliance with operator instructions. These payments

are large and growing, amounting to 7 percent of battery revenues in CAISO in 2023 (Department

of Market Monitoring 2024). In an effort to limit these payments, mechanisms to ensure consistency

between rolling horizon and perfect foresight models in the deterministic setting were proposed by

Hogan (2016) and studied by Hua et al. (2019). Real-time price consistency in a stochastic setting

is addressed by Cho and Papavasiliou (2023), who propose a pricing model that minimizes expected

ex-post lost opportunity cost, a measure of the regret experienced by market participants when

they view their historical dispatch in the realized sequence of prices. A challenge in the analysis

of these alternative pricing models is that adjustments to price formation can lead to different

opportunity costs for resources, leading to different participant offers and inefficient commitment

and dispatch solutions. As in Eldridge et al. (2023a,b), we adopt a different approach to Cho and

Papavasiliou (2023) by placing the focus more on ex-ante outcomes. When generators and battery

owners face future uncertainty they take positions that risk losses. Some of these losses result from

being dispatched in advance of a realized random price under which they would have preferred to

be dispatched differently. In our dispatch model, we propose that the generators should factor this

possibility into their ADRs and not be compensated with an uplift payment should they experience

some ex-post losses.

The specification of state-dependent future cost functions has a natural interpretation using

dynamic programming, where market participants construct offers that fully encode decision rules

applicable to any potential state of the system. These policies form the basis of Lagrangian relax-

ation techniques for solving deterministic economic dispatch problems that have a long history

dating back to Muckstadt and Koenig (1977). Over the last twenty years Lagrangian relaxation

models have been superseded by mixed integer programming formulations that generally yield bet-

ter solutions (Hobbs 2001, Li and Shahidehpour 2005). In recent years, the increase in renewable

energy and battery storage has resulted in a renewal of interest in Lagrangian relaxation for solving

stochastic economic dispatch problems (Brown and Smith 2025), resulting in price-directed deci-

sion rules for optimizing the generating decisions of plants in any observed state of the system. Our

approach is similar, but constructs ADRs that provide state-dependent energy offers to a system

operator. The ADRs will involve a short-run marginal cost and a future cost function that enables
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the system operator to dispatch resources and generate prices by solving a single-period economic

dispatch problem.

Ideally, decision rules from dynamic programming solutions will approximate socially optimal

policies. We show that a dispatch that maximizes expected social welfare can be duplicated by

ADRs when all agents share the same information and beliefs as the social planner, and the costs

and constraints of the social planner satisfy some separability conditions. While it is difficult

to demonstrate convergence to a socially optimal equilibrium more generally, we give some sim-

ple examples showing how dispatching based on imperfect decision rules can achieve results that

approximate the social optimum.

Our contributions can be summarized as follows.

1. We propose a new form of energy offer for market participants, an ADR, that encapsulates

their view of future market conditions.

2. We show how an optimal dispatch can be computed by solving a sequence of single-period

problems without requiring lookahead. We show that prices from this process approximate the

correct prices for competitive equilibrium.

3. We define the concept of ADR partial equilibrium, a situation in which agent’s beliefs of

future prices give rise to ADRs that together result in the conjectured prices, and give an example

of such an equilibrium.

4. We show how an ADR partial equilibrium in a setup with a complete market for contingent

contracts will result in agents assuming the same probability distributions about future events.

5. We show how a dispatch that maximizes expected social welfare can be duplicated by agent

decision rules when all agents share the same information, and the costs and constraints of the

social planner satisfy some separability conditions.

6. We describe an approach for separating the decisions of the system operator (who should

ensure a reliable supply of power) from market participants (who seek to benefit financially from

their foresight into future market conditions).

The paper is laid out as follows. In Section 2, we formulate a simple deterministic example of an

electricity dispatch model to establish an optimization framework and notation for the rest of the

paper. Section 3 then defines ADRs and the notion of an ADR partial equilibrium in this setting.

Section 4 establishes a correspondence between social optimization and partial equilibrium when

agents share the same probability beliefs. To illustrate the use of ADRs in a practical setting, we

discuss two numerical examples in Section 5, Section 6 gives a selection of optimization problems

in electricity markets that are amenable to modeling using ADRs, and Section 7 concludes.
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2. Multiperiod economic dispatch

In this section we define a simplified version of a convex multiperiod economic dispatch problem

for an electricity system, where we ignore many of the complex constraints that are a feature of

these models in practice. Our purpose here is to to fix notation and to provide a framework and

definition of Agent Decision Rules in the convex setting. To do this consider the following social

optimization problem.

SOP: min
∑T

t=1(ct(x(t)) +L>z(t))

s.t. Ax(t) + z(t)≥ dt, t= 1,2, . . . , T,

z(t)∈ [0, dt], x(t)∈X t.

Here, decision variables x(t) incur cost ct(x(t)) and must lie in the feasible set X t = X (x(t− 1)).

The total output in period t is Ax(t) where A is a real matrix. This must meet demand in period

t denoted dt, where z(t) represents lost load, penalized at a shortage cost denoted L. To allow for

load at different locations we penalize L>z(t) where L is a vector of (possibly) different lost load

costs. We assume throughout that SOP is a convex optimization problem.

The model SOP is quite general.

Example 1. If x(t) = (q(t), f(t)) consists of generation q(t) and transmission flows f(t), where

the kth row of Ax(t) would equal the net supply in node k of a transmission grid, giving

qk(t) +
∑
l

(flk(t)− fkl(t)) + zk(t)≥ dtk.

The constraints x(t)∈X (x(t− 1)) would then be

(q(t), f(t))∈Q(q(t− 1))×F

where

Q(q̄) = {q : 0≤ q≤ qmax, q− q̄≤ ρ, q̄− q≤ σ} (1)

represents generation capacities (qmax) and ramping constraints on generation, and F denotes the

set of feasible transmission flows meeting thermal limits and loop-flow constraints in a DC-Load

flow model. The cost function ct(q(t), f(t)) would measure a variable cost of generation and zero

cost for transmission. �

Example 2. One could set x(t) = (q(t), y(t), u(t), v(t)) in a single location model, where q(t) is

generation, y(t) is storage, v(t) is storage charging rate and u(t) is storage discharging rate. Then

Ax(t) would give ∑
i∈G qi(t) +

∑
i∈B ui(t)−

∑
i∈B vi(t) + z(t)≥ dt,
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where G is a set of generators, B is a set of batteries,

x(t) = (q(t), y(t), u(t), v(t))∈Q(q(t− 1))×Y(y(t− 1)),

and Q is defined by (1) and

Y(ȳ) = {(y,u, v) : 0≤ y≤E,0≤ u≤ r,0≤ v≤ s, y= ȳ−u+ ηv}.

Here r and s are bounds on rates of discharge and charge respectively, and the diagonal matrix

η measures the round-trip efficiency of the battery. As before we would set ct(q(t), y(t), u(t), v(t))

to be the variable cost of generation, where battery cycling costs could be imposed with a cost on

u(t). �

3. Agent decision rules

Moving away from the deterministic social optimization problem, we now consider a competitive

market consisting of a set I of agents. Each agent i ∈ I seeks to choose actions to maximize its

expected surplus over periods t= 0,1,2, . . ., where agent i operates in probability space (Ω,F ,Pi)

endowed with a filtration {Ft}Tt=0. We assume that the sample space and filtration is fixed and

known by all agents, but they may have different probability measures. Demand dt is a random

variable measurable with respect to Ft.

The action of xi of each agent i is constrained to lie in a convex set Xi(x̄i). Note that this set

depends only on the incoming state of agent i, as is the case in Example 1 and Example 2.

To simplify the analysis we will henceforth use a finite sample space, so the probability space for

each agent can be interpreted as a single scenario tree T with root node 0, and demand dn defined

at each node n∈ T , but with (possibly) different probability measures. Here we use notation n− to

denote the predecessor node of n and n+ to denote the set of immediate successors of n. To align

the agent problems with the social optimization problem SOP we make the following assumption.

Assumption 1. cn(x) =
∑

i c
n
i (xi), and X (x) =

∏
iXi(xi)

In practice this is not restrictive as long as ownership structures are simple. Hydro stations operated

by different agents but linked in a cascade would be an exception. In node n∈ T \{0} we assume

that agent i∈ I observes their own incoming state xi(n−) and the states of other agents x−i(n−).

In node n we assume that the agent also observes dn determining the demand outcome. For each

n ∈ T \{0}, agent i constructs a concave function V n
i (xi(n)) that estimates their future expected

surplus from node n onwards given their outgoing state xi(n).

The future value function V n
i (x̄i) is estimated by agent i using their probability distribution of

future energy prices, πi(n), and the recursion

V n
i (x̄i) = max

xi∈Xi(x̄i)
{πi(n)>A·ixi− cni (xi) +

∑
m∈n+

Pi(m | n)V m
i (xi)}. (2)
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Here A·i denotes the columns of A that correspond to agent i. Since we make no assumption that

all agents share the same beliefs about the probability distribution of demand and future prices, πi

has subscript i. The expectation is conditioned on the history of demand, and is computed using

agent i’s conditional probability Pi(m | n). The function Rn
i (·) =

∑
m∈n+ Pi(m | n)V m

i (·) is called

the Agent Decision Rule (ADR) for agent i.

Market agents can communicate their views of the future to the system operator using an ADR

that will describe how to dispatch their plant in each period (say an hour) over the next day and

could capture the expected future revenues via a value function. A typical ADR will be a function

of observable parameters in the electricity system. For example these could be the time of day, the

air temperature, the state of charge of a battery, the previous hour’s dispatch, and the previous

hour’s electricity price. In node n, each agent i supplies the function ci, the participant constraints

X n
i =Xi(xi(n−)) and ADR Rn

i (·) to the system operator who solves

DP(n,x(n−)): min
∑

i c
n
i (xi) +L>z−

∑
iR

n
i (xi)

s.t.
∑

iA·ixi + z ≥ dn, [π(n)],

z ∈ [0, dn], xi ∈X n
i

to yield a dispatch x(n) and prices π(n). Demand then pays π(n)>dn, and each agent i is paid

π(n)>A·ixi(n). Observe that the system output Ax is now expressed as the sum of agent outputs∑
iA·ixi. Also note that this is a single-stage deterministic dispatch problem. The system operator

does not forecast any values for future demand, but relies on the ADRs to ensure that they are in a

position (either by ramping up generation or charging their battery) to meet a future demand peak.

Nevertheless, the system operator is responsible for reliability of operations that are manifested

via a variety of different operational and security constraints. Such constraints, and aspects of

frequency and voltage control within the dispatch interval, should be incorporated directly into

the dispatch problem. Determining the right form of these constraints could involve additional

(offline) analyses or machine learning models that inform the composition and structure of these

constraints.

In this setting, we assume that Rn
i (·) is provided by agent i in “real time” in node n after the

history of n (including the demand in node n) has been observed. An alternative “long-lived” ADR

could be provided at n= 0; to make this replicate the real-time ADR for every node n the agent

would need to provide an adapted history-dependent ADR sequence for each node n ∈ T . This

sequence will depend of course on what information is observed by each agent in each node. In this

paper we take the view that all agents have complete information on other agents incoming states

(and the history of these).

It is clear that the prices that are paid after market clearing might not be the same as those

assumed by the agents when deciding their ADRs. This motivates the following definition.
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Definition 1. Given a scenario tree T with demand {dn}n∈T , an ADR partial equilibrium is a

set of prices {π∗(n)}n∈T , agent actions {x∗(n)}n∈T , and ADRs {Rn
i (·)}n∈T , i∈ I, such that:

1. for each n∈ T , x∗(n) solves DP(n,x∗(n−)) with shadow prices π∗(n);

2. for each n∈ T \ {0} and i∈ I, x∗i (n) solves

max
xi∈Xi(x∗(n−))

{π∗(n)>A·ixi− cni (xi) +Rn
i (xi)};

3. for each n∈ T that is not a leaf node and i∈ I,

Rn
i (x∗i (n)) =

∑
m∈n+

Pi(m | n)(π∗(m)>A·ix
∗
i (m)− cni (x∗i (m)) +Rm

i (x∗i (m))).

An ADR partial equilibrium occurs when the stochastic process of ADRs, dispatch and prices

assumed by each agent i yields the same stochastic process of prices and dispatch in market clearing.

This is a form of rational expectations equilibrium (see Lucas Jr and Prescott (1971)) but also has

similarities to recursive competitive equilibrium (see Prescott and Mehra (2005), Aiyagari (1994))

and to mean-field games (see Lasry and Lions (2007), Gomes et al. (2010)). Unlike these papers,

we work with a finite number of competing agents. We make the assumption that the agents do

not behave strategically with respect to other agents’ actions in the same state of the world (as

might happen, e.g., in a Nash equilibrium where agents seek to influence the market price).

The following two-period example illustrates an ADR partial equilibrium.

Example 3. Consider a scenario tree with three nodes and three agents: batteries A and B with

capacity 1 MWh and equal efficiency η = 0.8, and a thermal plant C with unlimited capacity and

no ramping constraints. Suppose the marginal cost of plant C with output q is

c̃(q) =

 1, 0≤ q≤ 2,
2q− 3, 2< q≤ 3,
3, q > 3.

At time zero in node n= 0, demand is d(0) = 3.5 and each battery holds 1 MWh of charge at the

start of the period. At time 1, two demand outcomes are possible, defined by successor nodes n= 1

with d(1) = 2 and n= 2 with d(2) = 4. Agent A assigns P(1) = 0.6, P(2) = 0.4, and agent B assigns

P(1) = 0.4, P(2) = 0.6.

The ADR partial equilibrium is defined by charge and discharge actions vi(n), ui(n) of A and B,

and generation actions q(n) of C, prices π(n), and ADRs for A, B and C. The actions and prices

are as follows.
vA(0) = 0, vA(1) = 0, vA(2) = 0;
vB(0) = 0, vB(1) = 0, vB(2) = 0;
uA(0) = 1, uA(1) = 0, uA(2) = 0;
uB(0) = 0, uB(1) = 1, uB(2) = 1;
q(0) = 2.5, q(1) = 1, q(2) = 3;
π(0) = 2.0, π(1) = 1, π(2) = 3;
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The ADR for A in node 0 is the expected future value of storage yA at prices 1 and 3 is 1.8yA, for

yA ∈ [0,1]. Similarly the ADR for B in period 0 is 2.2yB, for yB ∈ [0,1]. In nodes 1 and 2 the ADR

of each battery is assumed to be identically 0. The ADR for C in all nodes is also 0.

We now verify that this solution is an ADR partial equilibrium, by checking each of the three

conditions in the definition. First,

DP(0): min
∫ q

0
c̃(z)dz− 1.8(1−uA)− 2.2(1−uB)

q+uA +uB ≥ 3.5 [π]
uA, uB ∈ [0,1], q≥ 0

has optimal solution defined by thermal dispatch q(0) = 2.5, discharge uA(0) = 1, uB(0) = 0, price

π = 2.0, so the solution satisfies condition (1). For node n = 1 we have π(1) = 1, and marginal

cost of generation at net demand of 1 is $1/MWh. For node n= 2 we have that π(n) = 3, and the

marginal cost of generation at net demand of 3 is $3/MWh. So thermal dispatch satisfies condition

(2). Each battery satisfies condition (2) also: uA(1) = uA(2) = 0 is the only feasible solution for A in

the second stage, and the action uB(1) = uB(2) = 1 maximizes πuB plus a zero future reward in each

node. Finally at time 0, for yA, yB ∈ [0,1], R0
A(yA) = 1.8yA and R0

B(yB) = 2.2yB are easily shown to

be expected future rewards of batteries given prices and agent probabilities, so the solution satisfies

condition (3). �

It is not clear for a scenario tree T with demand {dn}n∈T that an ADR partial equilibrium will

always exist. If there are additional instruments that enable agents to speculate on future energy

prices then a necessary condition for the existence of an ADR partial equilibrium is that the agents

share a common probability distribution. This statement is a form of no-arbitrage condition that

is made precise as follows.

Definition 2. An Arrow-Debreu security indexed on node m∈ T \{0} is a financial instrument

acquired in predecessor node m− that pays $1 in node m.

Assumption 2. In each node n∈ T apart from leaf nodes, there is a complete market for Arrow-

Debreu securities indexed on each successor of n.

Definition 3. A complete-market ADR partial equilibrium is an ADR partial equilibrium

together with a price µ(m), m∈ T \ {0} and a set of trades Wi(m) so that

0≤
∑
i

Wi(m)⊥ µ(m)≥ 0, m∈ T \ {0},

and in each node n each agent i maximizes

π∗(n)>A·ixi− cni (xi)−
∑

m∈n+

µ(m)Wi(m) +
∑

m∈n+

Pi(m | n)Wi(m) +Rn
i,x(n−)(xi).
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As we show in Example 1, it is not necessary for agents to share the same probability measure

in an ADR partial equilibrium. However Assumption 1 makes this a property of every complete-

market ADR partial equilibrium.

Theorem 1. Suppose Assumption 2 holds, and a set of prices {π∗(n)}n∈T , agent actions

{x∗(n)}n∈T , and ADRs {Rn
i,x(n−)(·)}n∈T exists forming a complete-market ADR partial equilibrium.

Then Pi is the same for each agent i∈ I.

Proof. Consider an arbitrary node n∈ T that is not a leaf node. Suppose µ(m) is the price for

an Arrow-Debreu security indexed on m∈ n+. Suppose for some agent i Pi(m)>µ(m)Pi(n). Then

agent i could make an infinite expected reward from buying infinitely many Arrow-Debreu securities

indexed on m. Thus Pi(m)≤ µ(m)Pi(n). A similar argument shows that Pi(m)≥ µ(m)Pi(n). Since

Pi(0) = 1, this shows that Pi(m) =
∏

l∈P (m) µ(l) where P (m) is the set comprising m and the path

of nodes back to node 0, where we set µ(0) = 1. �

Theorem 1 assumes that all agents are risk neutral. It has a natural extension to agents endowed

with coherent risk measures, where the common probability distribution emerges from trading

Arrow-Debreu securities to yield a social coherent risk measure defining this distribution (see Ferris

and Philpott (2022)).

Theorem 1 states that agents sharing the same probability distribution is a necessary condition

for a complete-market ADR partial equilibrium. In the next section we show that a common

probability distribution is a sufficient condition for existence of an ADR partial equilibrium, without

Assumption 1, but subject to an assumption on the separability of the subdifferential of a social

Bellman function.

4. Welfare theorems for ADRs

This section demonstrates the existence of an ADR equilibrium that solves the social optimiza-

tion problem. The idea underlying the construction is quite simple. We assume that agents have

access to all parameters defining the social optimization problem (including other agents’ costs and

capacities) and share the same probability distribution as the system operator. Agents then solve

the social optimization optimization problem, and construct their ADRs by decomposing the social

Bellman function. This decomposition requires some separability assumptions on the problem data

and constraint qualifications on the optimization problems to be solved, and its construction is

rather technical. The reader could skip this section without losing the thread of the paper.
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To simplify the argument, we focus first on a deterministic setting, and then show how the

construction extends naturally to a scenario tree. In the deterministic setting, recall the multiperiod

economic dispatch problem over T periods, defined as follows:

SOP: min
∑T

t=1(ct(x(t)) +L>z(t))

s.t. Ax(t) + z(t)≥ dt, t= 1,2, . . . , T,

z(t)∈ [0, dt], x(t)∈X t,

where X t = X (x(t − 1)) provides the linkage between periods. SOP can be solved by dynamic

programming. The stage problem at time t is

SSP(t): min ct(x) +L>z+Ct+1(x)

s.t. Ax+ z ≥ dt, [π(t)],

z ∈ [0, dt], x∈X t.

Here π(t) are the optimal Lagrange multipliers on the demand constraint, and Ct+1(x) denotes an

optimal future cost incurred from the end of stage t if the action in stage t is the vector x.

Assumption 3 (CQ). We assume throughout this section that ct and Ct are convex functions

of x for every t with CT+1(x) = 0, that domCt is the whole space, and ri dom ct ∩ riX t 6= ∅.

Suppose that a social planner, instead of solving SOP, solves a sequence of T problems of the

form SSP(t). If Ct+1(x) is the true Bellman function then this solution will recover the optimal

solution of SOP. In the stage problem the system marginal cost is π(t), so under uniform pricing,

load should pay this price at the margin and generators should be paid at this price.

We would like to apply a Lagrangian argument to express the solution to SSP(t) as an ADR

partial equilibrium. In general, however, Ct+1(x) will not be separable into a sum of functions∑
i∈I C

t+1
i (xi), which appears to make such an argument impossible.

However, to see when this is possible, consider a Lagrangian for SSP(t):

L(x, z,π) = ct(x) +L>z+Ct+1(x) +π>(dt−Ax− z).

Theorem 2. Suppose f(x) := ct(x) − π>Ax + Ct+1(x) and Assumption 3 holds. Then (x, z)

solves SSP(t) if and only if there is some π such that

0≤Ax+ z− dt ⊥ π≥ 0, (3)

0∈L−π+N[0,dt](z), (4)

and

0∈ ∂f(x) +NX t(x) (5)

hold, where ∂f(x) is the subdifferential of f at x, and NX t(x) is the normal cone to X t at x. In

this case, x minimizes f over x∈X t.
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Proof. We just apply the saddlepoint optimality conditions. When is (x, z,π) a saddle point of

the Lagrangian L(x, z,π)? Clearly π maximizes L(x, z,π) over π ≥ 0 is equivalent to (3). For the

minimization of the Lagrangian, observe that we can minimize over z separately, giving (4). This

means the remaining optimization seeks to minimize f over x∈X t. Assumption 3 guarantees that

x is optimal for this problem if and only if (5) holds. But these conditions are equivalent to (x, z)

solving SSP(t). �

We wish to decompose (5) by agent, and in this deterministic case we need the following sepa-

rability assumption:

Assumption 4. ct(x) =
∑

i c
t
i(xi) and X =

∏
iXi.

Since ∂
∑

i c
t
i(xi) =

∏
i ∂c

t
i(xi) and NX (x) =

∏
iNXi(xi), (5) is true if there exists a subgradient g(x)

of Ct+1 at x with

0∈
∏
i

∂cti(xi)−π>A+ g(x) +
∏
i

NXi(xi).

Consider a fixed x̂ ∈ X and let F (x) be any convex function of x. For each i ∈ I we define a

univariate conditional function Fi,x̂−i
(xi) by replacing all components j of x except the ith by x̂j.

Thus (using x̂−i notation) we have Fi,x̂−i
(xi) = F (xi, x̂−i).

Now consider the conditional functions Ct+1
i,x̂−i

(xi), i∈ I, defined from the (social) optimal future

cost function Ct+1(x). For x̂∈X t and π≥ 0 we define the agent stage problem:

Pt
i(π, x̂−i): max (π>A)i xi− cti(xi)−Ct+1

i,x̂−i
(xi)

s.t. xi ∈X t
i .

The next result is used to show that if (x∗, z∗) solves SSP(t) then there exists π such that each

component x∗i will solve Pt
i(π,x

∗
−i).

Proposition 1. Let π ≥ 0 be given and Assumption 4 hold. If x∗ minimizes f(x) :=∑
i∈I c

t
i(xi)− (π>A)i xi +Ct+1(x) over x∈X t, then x∗i solves Pt

i(π,x
∗
−i).

Proof. Suppose x∗i does not maximize (π>A)i xi− cti(xi)−Ct+1
i,x∗−i

(xi). Then there is some x̃i ∈X t
i

with

cti(x̃i)−
(
π>A

)
i
x̃i +Ct+1

i,x∗−i
(x̃i)< c

t
i(x
∗
i )−

(
π>A

)
i
x∗i +Ct+1

i,x∗−i
(x∗i ).

It follows that ∑
j∈I\{i}

(ctj(x
∗
j )−

(
π>A

)
i
x∗j ) + cti(x̃i)−

(
π>A

)
i
x̃i +Ct+1(x̃i, x

∗
−i)

<
∑

j∈I\{i}

(ctj(x
∗
j )−

(
π>A

)
i
x∗j ) + cti(x

∗
i )−

(
π>A

)
i
x∗i +Ct+1(x∗)

and (x̃i, x
∗
−i)∈X t which violates the optimality of x∗. �
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We would like to establish a converse result that states that optimal solutions of Pt
i will also

solve SSP(t) as long as the complementary slackness conditions (3) and (4) hold. This requires

a connection between the subdifferential of each Ci,x∗−i
and the subdifferential of C. We have the

following result.

Lemma 1. Let x̂∈X . If g(x̂) = [g1(x̂) . . . gn(x̂)]> ∈ ∂C(x̂) then for each i∈ I, gi(x̂)∈ ∂Ci,x̂−i
(x̂i),

so ∂C(x̂)⊂
∏

i ∂Ci,x̂−i
(x̂i).

Proof. We have for any x

C(x) ≥ C(x̂) + g(x̂)>(x− x̂)

= C(x̂) +
∑
i∈I

gi(x̂)(xi− x̂i)

Thus

Ci,x̂−i
(xi) = C(xi, x̂−i)

≥ C(x̂) + gi(x̂)(xi− x̂i)

which gives the result. �

If C is differentiable everywhere then for each i, Ci,x̂−i
is also differentiable. This means that

∂Ci,x̂−i
(x̂i) is a singleton {gi(x̂)} that defines the unique subgradient that comprises ∂C(x̂), so

∂C(x̂) =
∏

i ∂Ci,x̂−i
(x̂i). Note also that if C is separable C(x) =

∑
i fi(xi), then it also follows that

∂C(x̂) =
∏

i ∂Ci,x̂−i
(x̂i). Equality does not hold in general, since it is easy to find nonsmooth convex

functions C where gi(x̂) ∈ ∂Ci,x̂−i
(x̂i) but g(x̂) /∈ ∂C(x̂). See for example C(x, y) = |x− y|+ |x+

y− 2|.

We can now establish the converse to Proposition 1.

Proposition 2. Let π ≥ 0, x̂ ∈ X t be given and suppose ∂Ct+1(x) =
∏

i∈I ∂C
t+1
i,x̂−i

(xi) and

Assumptions 3 and 4 hold. If for each i ∈ I, x̂i solves Pt
i(π, x̂−i) then x̂ minimizes

∑
i∈I(c

t
i(xi)−

(π>A)i xi) +Ct+1(x) over x∈X t.

Proof. If x̂i maximizes (π>A)i xi − cti(xi)−Ct+1
i,x̂−i

(xi) over xi ∈ X t
i then x̂i minimizes cti(xi)−

(π>A)i xi +Ct+1
i,x̂−i

(xi) over xi ∈X t
i so under Assumption 3

0∈ ∂cti(x̂i)−
(
π>A

)
i
+ ∂Ct+1

i,x̂−i
(x̂i) +NX t

i
(x̂i)

which under Assumption 4 gives

0∈
∏
i

∂cti(x̂i)−A>π+ ∂Ct+1(x̂) +
∏
i

NX t
i
(x̂i)

implying the optimality of x̂. �
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Propositions 1 and 2 can now be combined to give the following welfare therorems.

Theorem 3. Suppose (x∗, z∗) solves SSP. If Assumptions 3 and 4 hold then there exists π such

that x∗i solves Pt
i(π,x

∗
−i), i∈ I.

Proof. By Theorem 2 there exists π such that (3), (4) and (5) hold. For this π, (5) and Propo-

sition 1 then implies that x∗i solves Pt
i(π,x

∗
−i). �

Theorem 4. Suppose (x̂, ẑ, π) satisfy (3) and (4), Assumptions 3 and 4 hold and ∂Ct+1(x) =∏
i∈I ∂C

t+1
i,x̂−i

(xi). Then if x̂i solves Pt
i(π, x̂−i), i∈ I it follows that (x̂, ẑ) solves SSP(t).

Proof. If x̂i solves Pi(π, x̂−i) then Proposition 2 implies (5) whereby the result follows from

Theorem 2. �

We can extend these theorems in a straightforward way to a setting in a scenario tree T with

demand {dn}n∈T and probability measure P. This gives a stochastic formulation of SOP:

SSOP: min
∑

n∈T P(n)(cn(x(n)) +L>z(n))

s.t.
∑

iA·ixi(n) + z(n)≥ dn, [π(n)], n∈ T ,

z(n)∈ [0, dn], n∈ T ,

xi(n)∈Xi(x(n−)), n∈ T \ {0}.

The stochastic optimal dispatch problem can then be solved (in principle at least) in a recursive

fashion. The social planning stage problem at node n is now

SSP(n, x̄): Cn(x̄) = min
∑

i c
n
i (xi) +L>z+

∑
m∈n+ P(m | n)Cm(x)

s.t.
∑

iA·ixi + z ≥ dn, [π(n)],

z ∈ [0, dn], xi ∈X n
i :=Xi(x̄).

where P(m | n) = P(m)/P(n), and the sum over m∈ n+ is assumed to be 0 when n is a leaf node of

T . Thus Cn(x̄) denotes the minimum expected cost from the optimal policy implemented in node

n and all its successors when the incoming state is x̄.

Definition 4. Cm(x) is gradient separable at x̂(n) if for every x,

∂Cm(x) =
∏
i∈I

∂Cm
i,x̂−i

(xi)

where Cm
i,x̂−i

(xi) =Cm(xi, x̂−i(n)), i∈ I.
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The deterministic analysis can be applied to SSP(n, x̄), but we assume now that every agent

shares the same probability distribution as the social planner. For x̂ ∈ X and π ≥ 0 we define the

agent stage problem

Pn
i (π(n), x̂−i): max π(n)>A·ixi− cni (xi) +Sn

i (xi)
s.t. xi ∈Xi,

where Sn
i (xi) =−

∑
m∈n+ P(m | n)Cm

i,x̂−i
(xi). Observe that P in this expression has no subscript i.

We also write complementary slackness conditions

0≤Ax(n) + z(n)− dn ⊥ π(n)≥ 0, n∈ T , (6)

and

0∈L−π(n) +N[0,dn](z(n)), n∈ T . (7)

The following assumption extends Assumption 3 to every node in the scenario tree.

Assumption 5. For every n ∈ T , cn and Cn are convex functions of x, domCn is the whole

space, Assumption 1 holds, and ri dom cn ∩ riX n 6= ∅.

The same arguments as used in the proofs of Theorem 3 and Theorem 4 yield the following

welfare theorems.

Theorem 5. Suppose (x∗(n), z∗(n))n∈T solves SSOP, Assumption 5 holds, and we let Sn
i (xi) =

−
∑

m∈n+ P(m | n)Cm
i,x∗−i

(xi), i∈ I. Then there exist π(n) such that x∗i (n) solves Pn
i (π,x∗−i), i∈ I.

Theorem 6. Suppose (x̂(n), ẑ(n), π(n))n∈T satisfy (6) and (7), Assumption 5 holds, and for

every n∈ T \{0}, Cn(x) is gradient separable at x̂(n−), then if x̂i solves Pi(π, x̂−i), i∈ I it follows

that (x̂, ẑ) solves SSOP.

Theorem 5 allows us to establish the existence of an ADR partial equilibrium. In this equilibrium

all agents assume the same probability distribution as the social planner and choose ADRs based

on the expected future cost functions of the social planner.

Theorem 7. Suppose all agents have the same probability distribution P as the social plan-

ner and (x∗(n), z∗(n)),Cn)n∈T solves SSOP, with each Bellman function Cn gradient separable at

x∗(n−), n ∈ T \ {0}. If Sn
i (xi) =−

∑
m∈n+ P(m | n)Cm

i,x∗−i
(xi), i ∈ I, and Assumption 5 holds, then

there exists π∗(n) so that (x∗(n), π∗(n), Sn
i (·))n∈T is an ADR partial equilibrium.
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Proof. By Theorem 5 there exists π∗(n) satisfying (6) and (7) such that x∗i (n) solves Pn
i (π∗, x∗−i),

i ∈ I, where Sn
i (xi) = −

∑
m∈n+ P(m | n)Cm

i,x̂−i
(xi). We show that {π∗(n), x∗(n), Sn

i (·)}n∈T is an

ADR partial equilibrium, where Sn
i (·) takes the place of Rn

i,x(n−)(·) in the definition (since P replaces

Pi). The second property of the definition is immediate by Theorem 5. The optimality conditions for

Pn
i (π,x∗−i), i∈ I along with (6) and (7) show that x∗(n) solves DP(n,x∗(n−)) with Bellman func-

tion
∑

iS
n
i and prices π∗(n). Finally since (x∗(n), z∗(n)),Cn)n∈T solves SSOP, and Cn is gradient

separable at x∗(n−), and satisfies the system dynamic programming recursion at every n∈ T \{0},

the definition of Sn
i (xi) ensures that it satisfies the third condition in the definition of an ADR

equilibrium. �

5. Illustrative example

In this section we study a particular dispatch problem at a single node with a single generator and

one battery operator over a 24-hour period. The problem SOP becomes the example problem

EP: min
24∑
t=1

(ct(q(t)) +Lz(t))

s.t. q(t) +u(t)− v(t) + z(t)≥ dt,

q(0) = q0, q(t)∈Q(q(t− 1)),

yi(0) = y0, (yi(t), u(t), v(t))∈Y(y(t− 1)),

z(t)∈ [0, dt], t= 1,2, . . . ,24,

where

Q(q̄) = {q | 0≤ q≤ qmax, q− q̄≤ ρ} , (8)

Y(ȳ) = {(y,u, v) | 0≤ y≤E,0≤ u≤ r,0≤ v≤ s, y= ȳ−u+ ηv} . (9)

Here q(t) denotes generation dispatched in period t, and y(t) is storage of energy in the battery

at the end of period t. These variables have initial values q0 and y0 at the start of the day. The

dispatch q(t) is constrained by a ramp-up limit ρ and capacity qmax and incurs a cost of ct(q(t)).

Battery storage is increased by charging using variable v and decreased by discharging an amount

u. Round trip losses are modeled using the factor η, which multiplies v. Charging and discharging

rates are limited by the parameters s and r respectively, and the battery has a maximum charge E.

The total amount generated should meet demand dt. Any shortfalls z(t) are penalized at a value

of lost load L.

In the example, the generator has an increasing marginal cost with ten steps defined by Table 1.

The values chosen for the other parameters are given in Table 2. Meeting the duck-curve shaped
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energy tranche (MWh) 5.0 5.0 5.0 5.0 5.0 5.0 10.0 10.0 10.0 10.0
marginal cost ($/MWh) 10.0 20.0 30.0 40.0 50.0 70.0 90.0 110.0 150.0 200.0

Table 1 Marginal cost of generator

qmax = 70.0 E = 30.0 η = 1.0
r = 15.0 s = 15.0 ρ = 10.0
L = 1000.0 q0 = 35.0 y0 = 0.0

Table 2 Parameter values for example

Figure 1 Values of dt for t = 1,2, . . . ,24.

demand in our model will require the generator to ramp up in periods 14 to 18 and the battery to

discharge in periods 19 through 21.

We first solve the perfect foresight model EP where the demand is known ex-ante for all t =

1,2, . . . ,24. Given perfect foresight, the model can be solved as a deterministic linear program

covering all 24 hours of operations. The optimal solution to EP has cost $48,470, with optimal

dispatch and battery charge shown in Figure 2.

The problem EP can alternatively be considered as a discrete-time optimal control problem. It

can be solved using dynamic programming using the recursion:

F t−1(q(t− 1), y(t− 1)) = min ct(q) +Lz+F t(q, y)
s.t. a+u− v+ z ≥ dt,

q ∈Q(q(t− 1)),
(y,u, v)∈Y(y(t− 1)),
z ∈ [0, dt],

where F 24(q, y) = 0 and q(0) = q0, y(0) = y0.

This yields future cost functions F t that can be used to solve the sequence of optimization

problems DP(1,q(0),y(0)), DP(2,q(1),y(1)), . . . , DP(24,q(23),y(23)) where q(0) and y(0) are given



Philpott,Ferris,Mays: Stochastic dispatch
20 Article submitted to Management Science; manuscript no. (Please, provide the manuscript number!)

Figure 2 Solution of DP showing generation x superimposed on demand, and battery net input v−u for

t = 1,2, . . . ,24.

and F t is substituted directly into DP. (Here we use the notation F to denote a deterministic

future cost function.) These problems involve no explicit lookahead forecasts, but when solved in

sequence they replicate the socially optimal dispatch obtained by directly solving EP.

In practice, the system operator does not have perfect foresight. The system operator could

estimate the parameters of a stochastic process of future demand (and other parameters) and use

these to approximate an expected future cost function denoted Ct(q, y). This is the approach fol-

lowed by the system operator to evaluate the expected future value of stored water in the Brazilian

electricity system (Diniz et al. 2018). The value is based on a centrally determined stochastic model

of inflows, and does not explicitly incorporate differing views of market participants.

Experiment 1

The example above can be extended to accommodate uncertainty in demand by adding indepen-

dent equally likely noise terms chosen from {−4,−2,0,2,4} at each t to the demand in Figure 1.

We then solve the system optimization problem using stochastic dynamic programming (SDP)

and extract expected future cost functions Ct(q, y) at each stage. The SDP solution has optimal

expected cost of C1(q0, y0) = $52,377. This is the socially optimal solution for a perfectly compet-

itive equilibrium where every agent shares the same probability distribution of future demand.

We can investigate alternative agent policies by simulation. In all simulations we use 10,000

sample paths with common random numbers. Recall that the perfect foresight solution gives a cost

of $48,470 in the deterministic case. Simulating the policy defined by the deterministic future cost

functions F t with the noisy demand defined above yields an estimated expected cost of $54,255
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with standard error $57. By contrast, simulating the socially optimal solution computed using SDP

gives an expected cost of $52,406 with standard error $50.

As discussed above, we propose that market participants provide ADRs defined by their own

future reward functions. These could be provided in real time at the start of each period, or be

long-lived over many future trading periods. Here we investigate the latter option in the example

problem, where at the start of the day the generator agent provides functions St
g(q), t= 1,2, . . . ,24

and the battery operator provides functions St
b(y), t= 1,2, . . . ,24, and then the system operator

solves DP(1,q(0),y(0)), DP(2,q(1),y(1)), . . . , DP(24,q(23),y(23)) using

Ct(q, y) =−St
g(q)−St

b(y).

First, suppose that each agent solves the deterministic system problem with expected demand

and computes the generation q̂(t) and finishing storage ŷ(t) for each interval t as well as the

deterministic future cost function F t(q, y). The agents then compute univariate value functions

F t
g(q) = F t(q, ŷ(t)) and F t

b (y) = F t(q̂(t), y) respectively, with each assuming that the other agent

follows the socially optimal dispatch from the deterministic case. The system operator then solves

DP(1,q(0),y(0)), DP(2,q(1),y(1)), . . . , DP(24,q(23),y(23)) using

F t(q, y) = F t
g(q) +F t

b (y).

Using the data in the above example, this approach gave ADRs for each agent which yielded a

social cost of $48,470 when simulated in the perfect foresight scenario, the same as the deterministic

social optimum as predicted by Theorem 4. Simulating these ADRs with noise added to demand

yielded an estimated expected social cost of $55,430 (standard error $76). This turns out to be

worse than the $54,255 obtained by simulating with the function F t(q, y) rather than the separable

ADRs that approximate F t(q, y). In other words, when the system operator and the agents all

use a deterministic simplification to compute future cost functions, there is an advantage to the

centralized solution. Observe that this need not be the case in general, as F t(q, y) is itself an

approximation of the true social cost function Ct(q̂(t), y).

Second, suppose that the agents are more sophisticated and solve the stochastic social planning

problem to yield Ct(q, y). Each agent then computes respective univariate value functions Ct
g(q) =

Ct(q, ŷ(t)), and Ct
b(y) = Ct(q̂(t), y), using q̂(t) and finishing storage ŷ(t) from the deterministic

problem solved with expected demand. In the example, this approach gave ADRs for each agent

which yielded an estimated social cost of $52,688 (standard error $55) when simulated with 10,000

sample paths. This compares well with the social optimum policy that yields $52,406. With that

said, these ADRs have higher cost since they are constructed to approximate Ct(q, y) only at those

values visited in the deterministic solution.
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In order to recover the example’s socially optimal solution using ADRs, we would need to supply

a value function for each agent at each stage that varies with the noise outcome in that stage, and

history of dispatch up to that point. At each stage t, when presented with noise outcome ω, the

agent g would provide the system operator with St+1
g (q) =−Ct+1(q, ŷ(t,ω)), and the agent b would

provide the system operator with St+1
b (y) =−Ct+1(q̂(t,ω), y), where (q̂(t,ω), ŷ(t,ω)) is the state at

the end of period t in scenario ω when the social optimal policy is applied. The ADR in this case is

provided in real time at the beginning of each trading period, assuming knowledge of the demand

in that period. If each participant’s ADR for all periods must be supplied to the system operator

at the beginning of the day, then to recover system optimality a univariate function St
g(q) would

need to be specified at each t for all possible ŷ(t) values, along with a univariate function St
b(y)

specified at each t for all possible q̂(t) values.

The expected cost resulting from the four simulated policies is summarized in Table 3.

Dispatch Input
Separable ADRs Social Cost-to-Go

Cost Function Estimate
Deterministic $55,430 $54,255
Stochastic $52,688 $52,406

Table 3 Expected cost under simulated policies

Experiment 2

We repeated the above experiment with different noise terms added to the demand outcomes.

The noise terms are now chosen from {-4, -2, 0, 8, 16} with probabilities {0.2, 0.2, 0.5, 0.05, 0.05}

which gives the same mean demand but higher variance. The optimal policy now has an expected

cost of $57,438. Simulation with 10000 sample paths gives an estimated expected cost of this policy

equal to $57,506 (standard error 102)

The solution for this example in the deterministic case is identical to that of Experiment 1,

yielding a social cost of $48,470. Simulating the deterministic dynamic programming policy com-

puted assuming deterministic demand with 10000 (high variance) sample paths gives an estimated

expected cost equal to $60,984 (standard error 112).

Simulating the (separated) ADRs derived from the deterministic dynamic programming pol-

icy with 10000 (high variance) sample paths gives an estimated expected cost equal to $63,895

(standard error 126).

Finally we simulate the ADRs derived from the stochastic Bellman functions evaluated at q̂(t)

and ŷ(t) values obtained by the perfect foresight problem (solved with expected demand). Simu-

lating these ADRs with 10000 (high variance) sample paths gives an estimated expected cost equal

to $59,409 (standard error 105). As such, the rank ordering of the four tested policies is the same
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in example 2 as it was in example 1. However, the higher variance in demand as compared with

example 1 has increased the difference in cost between the ADR policy and the socially optimal

policy.

6. Further examples

The ADRs we used in the example deal with battery storage and ramping generation when these

technologies are operated by different agents. A straightforward extension would consider some

agents having a mix of technologies and future value functions that depend on the states of each.

In this section we discuss other settings in which ADRs might play a role.

6.1. Classical bids as agent decision rules

Classical offer curves (i.e., supply functions) are a special case of an ADR, but typically do not

add any more state-dependent information than is currently available in a conventional dispatch

mechanism. In this limited case, the rule consists of data pairs (ci, qi) describing the supply function.

The ADR is specified by the immediate cost data ci and the parameterized set Xi defined in (1).

In this case both ρi and σi are infinite (no explicit ramping constraints) and capacities are given

by qmax. To construct a more nuanced ADR, a generator might have a forecast of future electricity

prices as a function of current observations and define offer curves that depend on these forecasts.

An ADR defined for period t cannot depend arbitrarily on the observed price π(t) in period t.

To illustrate this, consider a simple form of ADR defined by a supply function offered to a single

node convex dispatch model without ramping constraints. Such a function will yield a dispatch

of plant with marginal costs below the computed system marginal price, without specifying this

price explicitly in the supply curve. The form of dependence of dispatch on the observed price

π(t) in period t is restricted by the convexity of the dispatch problem. To be clear, an ADR that

dispatched 10 units if π(t) ∈ [0,50] and 5 units if π(t) ∈ [50,100] would not be acceptable in our

framework.

Demand response (also known as peak shaving) refers to demand that is decreased when prices

are high. When this is “behind the meter” it must be treated as a variation in net demand by the

dispatcher who must use a forecast. On the other hand it can be offered as a demand-side bid to

a dispatch model and dispatched by the system operator. This is modelled in dispatch problems

using a nonincreasing inverse demand curve that specifies the price in period t when the quantity

demanded is x. Demand curves for each consumer can be submitted to the system operator and

summed to give a system demand curve for use in a conventional dispatch model (see above).

Demand response can make use of ADRs when electricity is used to make a product that is

stored for later sale. In this case, the demand curve offered to the market might depend on the
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state of storage of the product. When storage is low the demand curve will buy more at each price

to replenish stock, and when it is high the demand curve will buy less.

6.2. ADRs for pump-storage hydro plants

Pump-storage hydro plants release water from a reservoir through turbines in peak periods when

prices are high, and then refill the reservoir by pumping water uphill when prices are low. These

facilities can be optimized using the same ADRs as batteries, possibly over a longer time scale.

6.3. ADRs for flexible demand

Instead of just reducing load, some industrial loads (or even data centers) can shift demand from

peak periods to off-peak periods. This flexible demand can be offered to wholesale markets using

ADRs. If the industry has a battery or some other mechanism to store energy then the ADR

takes a similar form to those for battery storage. This extends to settings where products that use

electricity can be stored for later sale.

The use of electricity for a particular task can be deferred from a high price period until later

when prices are lower. If the task has to be completed by the end of the time horizon then the

shifting of load can be optimized using an ADR. The variable x(t) = (y(t), v(t)) where the state

yj(t) is the proportion of task j that has been completed, and vj(t) denotes the electricity consumed

by task j in period t where the task requires ηj units of energy. We have

yj(t) = yj(t− 1) + vj(t)/ηj,

and the ADR uses a future cost function −Wj(yj) that is zero when yj = 1.

6.4. ADRs for hydroelectric generators

Although not represented explicitly in our formulation, a decision rule could be defined for hydro-

electric generators who release water from reservoirs to generate electricity, and replenish the

reservoir contents with (stochastic) inflows. Hydroelectric generators price the release of water by

estimating the expected marginal water value, which represents the expected opportunity cost of

releasing water now rather than in the future. This cost can be viewed as the derivative of a function

W t
j (yj) of the same form used to express the future value for batteries. This enables hydroelectric

generators to offer decision rules to the system operator as if they were a battery operator.

There is a range of models that can be used to dispatch hydroelectric generators. An isolated

reservoir with no inter-temporal constraints can compute an expected marginal water value through

dynamic programming. This can be used by the system operator to dispatch the hydro plant effi-

ciently. When hydroelectric stations are located at different points on a river network the marginal
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water value will vary with time and location. Indeed these values will be Lagrange multipliers

to flow balance constraints in a complicated multiperiod optimization problem. In principle, the

system operator can use these as a guide to dispatch each station in the river system.

An alternative model cedes control of the hydroelectric river system to the electricity system

operator who solves a lookahead problem. The river constraints are incorporated into the dispatch

model (like transmission constraints) which is optimized by the system operator accounting for all

water released from storage over the time horizon using an end-of-horizon future value function

W T
j (yj). This hydro-enhanced dispatch model requires a forecast of demand to inform some form

of lookahead in the dispatch model.

6.5. ADRs for reserve

Electricity generators and batteries can assign part of their capacity for reserve, and be paid a

price for this. This can be incorporated into an ADR dispatch model. The exact form of this model

depends on how reserve is defined. We outline a simple model where reserve is spare generation

capacity made available in each period by generators to deal with contingencies in that period only.

(The model for reserve being offered by batteries is similar.)

Suppose the amount of reserve required in period t is dr(t), and at the start of period t the

generation levels are q̄ and the battery charge levels are ȳ. Suppose that generator i∈ G is dispatched

qri of reserve at cost gi. The security-constrained dispatch model allows available generation to be

split into immediate demand satisfaction and reserve requirements.

SCDP(t, x̄):min
∑
i∈G

(ci(qi) + gi(q
r
i )) +L>z−

∑
i

Rn
i (xi),

s.t.
∑
i∈G

qri = dr(t),∑
i∈G

qi +
∑
j∈J

uj −
∑
j∈J

vj + z ≥ d(t),

(qi, q
r
i )∈ Q̃i(q̄i), i∈ G

(yj, uj, vj)∈ Ỹj(ȳj), j ∈J
z(t)∈ [0, d(t)],

where

Q̃i(q̄i) = {(q, qr) | 0≤ q+ qr ≤ qmax
i , q+ qr− q̄i ≤ ρi, q̄i− q− qr ≤ σi},

Ỹj(ȳj) = {(y,u, v) | 0≤ y≤Ej,0≤ u≤ rj,0≤ v≤ sj, y= ȳ
j
−u+ ηjv}.

The definition of Q̃i(q̄i) can include extra constraints on qr that depend on each generator’s plant.

Some care is needed in defining the expected future cost.
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6.6. ADRs for frequency regulation

Batteries can assign part of their capacity for frequency regulation, and be paid a price for this.

Suppose in period t that the total amount of battery capacity required for frequency regulation

is F (t). At time t each battery operator j offers some capacity kj MW at a price of ϕj dollars

per MW. The amount of frequency regulation they are dispatched is fj, which requires them to

allocate some of their battery storage to this task. Regulating the frequency involves charging and

discharging which consumes energy because of round-trip losses. Suppose this energy is ψjfj.

The frequency regulating dispatch model is as follows.

FRDP(t, x̄):min
∑
i∈G

ci(qi) +
∑
j∈J

ϕj(t)fj +L>z+Ct(x),

s.t.
∑
j∈J

fj ≥ F (t),∑
i∈G

qi +
∑
j∈J

uj −
∑
j∈J

vj + z ≥ d(t),

qi ∈ Q̃i(q̄i), i∈ G,
(yj, uj, vj, fj)∈ Ỹj(ȳj), j ∈J ,
z(t)∈ [0, d(t)],

where

Q̃i(q̄i) = {q | 0≤ q≤ qmax
i , q− q̄i ≤ ρi, q̄i− q≤ σi},

Ỹj(ȳj) = {(y,u, v, f) | 0≤ y≤Ej, 0≤ u≤ rj, 0≤ v≤ sj,
0≤ f ≤ kj, y= ȳj −u−ψjf + ηjv}.

7. Conclusions

In this paper we have described a new electricity dispatch and pricing model based on agent

decision rules (ADRs). We have demonstrated how ADRs can be used in storage, ramping, reserve

and frequency regulation. This model has the advantage of dealing with uncertainty in future

net demand for electricity without requiring the system operator to make forecasts or estimate

probability distributions. The individual views of the future taken by market participants are

incorporated into their ADRs and aggregated by the system operator in making the current period’s

dispatch.

In practice a market participant could devise their ADR to account for their attitude to risk

and possible trades in derivative contracts. As long as the ADR gives convex future cost functions

it can be easily handled in the formulation DP. Although our analysis in Section 4 focuses on the

expected efficiency of ADR dispatch in a risk-neutral setting, a similar analysis could be performed

when agents are risk-averse and endowed with coherent risk measures and markets for risk are

complete. As shown by Ferris and Philpott (2022), a risked competitive equilibrium in a scenario
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tree is equivalent to a risk-averse solution to a system optimization, using a coherent risk measure

derived from those of the agents. This gives similar results to Theorems 5 and 6, as long as the

system risked future cost function can be separated into the sum of agent functions.

The welfare results we derive assume that ADRs can be derived and submitted to the system

operator in real time at the beginning of a dispatch interval (typically five minutes) when the

incoming states of all agents are known. Gate-closure conditions that preclude changes in offer

in a given period (typically more than an hour) before dispatch make this impossible in practice.

Long-lived ADR offers that are contingent on all possible dispatch histories during the gate closure

period could be shown to yield the socially optimal solution in theory but are not realistic in any

practical setting. Nevertheless a single ADR that is contingent on the state of a battery or ramping

plant can persist over several consecutive dispatch periods to guide the system operator, who may

either solve a sequence of one-period problems with the ADR in each, or in case a reliable forecast

is available, solve a deterministic problem over T periods with the ADR guiding the outgoing state

in period T . We see experimentation to quantify any efficiency gains in such long-lived ADRs as a

fruitful area for further research.

Our analysis has not dwelt on how agents should generate their ADRs. The example we have

presented has a social planning problem with two state variables, making it amenable to solution

by dynamic programming. In most applications these future cost functions will have higher state

dimension and not be separable by agent at every stage. An approximate dynamic programming

method such as SDDP (Pereira and Pinto 1991) might then be required to generate suitable ADRs.

Even so, some battery operators will find the effort required to compute an optimal ADR too much.

However, there is nothing in our proposed dispatch process precluding them from using heuristic

rules to specify their ADR, e.g., a collection of buy and sell prices that are parameterized by their

state of charge.

Throughout this paper we have assumed a convex dispatch process. In many electricity markets

the dispatch involves the start-up and shut-down of generating units with minimum operating

levels and minimum up and down times. These are modeled using binary variables in multi-period

mixed-integer programs. Deriving suitable prices from these models remains a challenge. Further-

more constructing ADRs for such problems is not straightforward, although extensions of SDDP

to incorporate binary variables (Zou et al. 2019, Philpott et al. 2020) can be used to construct

approximate future cost functions to use as a guide for deriving good ADRs.
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