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Abstract

In an electricity pool market the market distribution function gives the proba-
bility that a generator offering a certain quantity of power at a certain price will
not be dispatched all of this quantity by the pool. It represents the uncertainty
in a pool market associated with the offers of the other agents as well as demand.
We present a general Bayesian update scheme for market distribution functions. To
illustrate the approach a particular form of this procedure is applied to real data
obtained from a New Zealand electricity generator.
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1 Introduction

In recent years, wholesale markets for electricity generation and distribution have emerged
in various regions around the world. Although implementations of these markets vary,
they all endeavour to deliver electric power to consumers at a competitive price, and pro-
vide sensible signals for investment and new entry. For an overview of different market
designs see e.g. [2], [6]. This paper focuses on a specific type of market structure called
an electricity pool, characterized by a central dispatch and pricing mechanism. In a pool
market the price of electricity in each trading period is determined by solving an optimiza-
tion problem that matches supply and demand so as to minimize the total revealed cost
of power delivery. The first electricity market of this type to be created was for England
and Wales, but similar markets now operate in Australia, New Zealand, Scandinavia and
some parts of Latin America and North America.

In this paper we consider the problem faced by a generator bidding into a wholesale
electricity pool market in circumstances where the demand for electricity and the be-
haviour of other generators are to some extent uncertain. In a pool market, generators
are required to submit offers to an independent system operator in the form of a sup-
ply function, specifying the amount that they are prepared to supply to the market at
each price level. In many markets (Australia and New Zealand, for example) the supply
functions are submitted in the form of a step function called an offer stack. The offer
stack defines a finite set of quantities to be offered and the price per MWhr to be asked
for each. It is convenient to model the offers as a continuous curve s = {(z(),y(1)),
0 <t < T}, in which the components z(¢) and y(¢) are monotonic increasing piecewise

differentiable functions of ¢. Here x(¢) traces the quantity component of the offer curve



and y(t) traces the price component. In each trading period of a pool market, the inde-
pendent system operator dispatches the offers of every generator in order of increasing
price until demand is met. The electricity market clearing price is the offer price of the
last generator dispatched.

A number of authors (see e.g. [3], [4], [5]) have developed models of electricity prices.
The majority of these models are focused on derivative pricing, and so they are generally
constructed from continuous-time stochastic processes that are modified to reflect the
changing volatility and occasional price spikes observed in electricity spot prices. As
observed in [5] most of the classical financial asset-pricing models are inadequate when
dealing with electricity spot prices. A further weakness of these price models is that they
assume that prices are exogenous, and so they cannot be used to optimize the offers of a
generator that has sufficient market power to influence the price by its offering strategy.

One approach to modelling the effect of generator strategies on electricity prices is
provided by the recent paper of Anderson and Philpott [1]. They define the market
distribution function ¥ (q,p) for a generator G, to be the probability that G is not fully
dispatched by the market if it makes a single offer to generate an amount ¢ at price p. (
G is not fully dispatched by the market if a plot of the residual demand function passes
below and to the left of the point (p,q)). As shown in [1], if ¢(q, p) is known then the
generator can compute an offer stack s that maximizes expected profit by maximizing the

line integral

Vi(s) = / R(q,p)di(q, p),

where R(q,p) is the profit when the generator is dispatched amount ¢ at a price p. In

practice, the function (g, p) is not known, and must be estimated from observations of



market behaviour. In this paper we describe a general Bayesian estimation procedure
for market distribution functions. The exact form that this procedure should take in
practice will depend upon the market structure, and the amount of information that this
reveals to participants as they trade. In practice we will expect both demand and bidding
behaviour to vary with the time of day, and so our estimate of (¢, p) will be with respect
to a particular time (or set of times), and new information will only become available
once a day.

The paper is laid out as follows. In the next section we derive a general Bayesian
update formula for participants in pool markets. This model assumes that the generator
knows its own dispatch quantity and clearing price following every offer, but does not have
any other information. In section 3 we show how this model takes a special form when all
generators are located at the same node, and all the uncertainty arises from the demand
at this node. We then look at the situation in which participants are located at different
nodes of a transmission network, so line losses and constraints alter the effect of their
actions at the generator’s node. In our Bayesian model the market distribution function
will represent these effects in some probabilistic fashion. We show how a generator can
construct a posterior estimate of the market distribution function from observations about
its own dispatch. Finally we illustrate the updating procedure by applying it to some data

provided by a New Zealand generating company.

2 Bayesian estimation of

We shall describe a Bayesian approach to estimate the function (g, p). The first step is

to decide on a parameterised family of market distribution functions, where the Bayesian



updates will determine a distribution over the parameters. We write

$(q,p) = /A (g, p)d(a)da (1)

where ¢(«) is a (possibly multivariate) density over a parameter space A, and {¥*(q,p)}
is a family of basis functions parameterised by o € A. We require that each (¢, p)
has the properties of a market distribution function (i.e. it is monotonic nondecreasing
in both arguments, and lies between 0 and 1.) To derive the Bayesian update formula
suppose that at some period i the generator submits a step function offer stack s, the
price turns out to be p; and the generator is dispatched ¢;. Let Fs be the event that

(gi, p;) falls on the section of s between (z(7*),y(7*)) and (x(7* + 8),y(7* 4+ 6)). Then

Pr(Bsla] = ¢%(@(" 4 6),y(7" +6)) = ¢ (2(77),y(77))
= (" +6),y(7" +8)) = P (x(77),y(77 + 8))

+(@(17),y (77 + 8)) = % (x(77), y(77))
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(@(77),y(7))2' (7°) + 6= = (2(77), y(T°))y/ (77) + 0(6?)

Writing &S(a) for the posterior density function for a, we have

Ha) = lim Pr{Eyla] L

where

g(o) = a{;f (o), y(r) (7°) +

Observe that the normalisation of (;/3 (dividing by the integral) need only be applied at the

end of a sequence of updates. For example, given observations (g¢;,p;), i =1,2,... ,k, we



have

B o o) [T a2 () + G- ()]

The posterior estimation of the function (g, p) as in (1) is just

3 Updates using a demand distribution

The procedure outlined in the previous section takes a simpler form if all participants are
located at the same node, at which there is a demand h with known probability density
function f(h). As above we suppose that at some period i the generator submits an
offer stack s, the price turns out to be p and the generator is dispatched . The first
step is to decide on a parameterised family of market distribution functions, where the
Bayesian updates will determine a distribution over the parameter. In the case where
the rest of the market is modelled by a supply function S, and demand is inelastic, the
market distribution function (g, p) can be expressed as Pr(h < ¢ + S(p)). (Although
we confine attention to inelastic demand, our model can also represent the case where
demand is defined by a known demand function D(p) with random “shocks” h, giving
¥(q,p)=Pr(h < g+ S(p) — D(p))). Since the distribution of h is assumed to be known
it makes sense to use this distribution rather than estimate it (implicitly or explicitly)
within the Bayesian framework.

Our framework uses a family of continuous (rest-of-market) supply functions S(«, p),

parameterised by « € [ag, a1]. Thus

¥*(q,p) = Pr(h < ¢+ S(a,p)),



where we are given a prior distribution over the parameter o with density function ¢
defined on [ag, ;). Observe that assuming a continuous S(a,p) is simply a device for
arriving at a continuous estimate of (g, p); the actual rest-of-market stack will conform

to the particular market rules that apply, which may entail that it is a step function.

Now
igmvmwﬁwszwuvw+amwﬁm
if@vmwﬁ»=$mwvawwuvﬂ+amwﬁm
giving

k

o(a) o ¢(a) [ (' (%) + (. )y (7)) f (@i + S(ev, i)

i=1

The application of this formula becomes simpler when our offer stack is a step function.
Here either 2/(7*) = 0 and ¢/(7*) = 1 (on a vertical section), or 2/(7*) =1 and ¢'(7*) =0
(on a horizontal section). Thus if we are dispatched at (g;,p;) on a vertical section then

P()S" (v, pi) f (g + S(a, pi))

) = T )" (o) (s + 50, :) o

and if we are dispatched at (g;, p;) on a horizontal section then

() f (g + S, pi))

o) = Jord(a) g+ S(a, pi))da’

These formulae provide a mechanism for updating ¢. The application of the formulae
as stated will only be possible when we have some analytic representation of the demand
density f. The posterior estimate of the function (¢, p) in terms of f and ¢(a) is now

calculated to be

a1 - a1 pg+S(a,p) 5
¢(q,p)=/a W(q,p)aﬁ(a)doz:/a /0 F(h)é(a)dhda.



4 Updates in a transmission system

In most markets the participants are located at nodes of a transmission system, and (along
with other generators) supply electricity demand through this network. When there are
no line losses or constraints in the network, the system can be modelled by aggregating
the demand at the nodes of the network to form a single demand at a pool node at which
all generation is assumed to be offered. The single-node analysis of the previous section
can then be applied.

In the presence of losses and constraints the analysis of the previous section is difficult
to apply. The effect of the actions of other participants on the price at each node depends
on the location of those participants as well as the spatial variation of the demand in
each trading period. To model this situation one might try to represent the network by
an equivalent single node, or a small set of aggregated nodes. However this approach can
become complicated for even the simplest of representations of the transmission network.
Our approach is to create a model of 1(g, p) at a single node based only on observations
at the node, in an effort to incorporate automatically the network effects along with the
variation in demand and variation in competitor behaviour.

An important consideration in this model is the choice of the family {:)*(¢,p)}. This
will depend on the particular characteristics of the market being studied. Our analysis in
this section is representing the rest of the market as if they were acting as a single agent at
the node where the generator is located. They can be thought of as offering an (unknown
supply) function S(«, p) in conjunction with some effective nodal demand that is related
to the multivariate nodal demands. One factor influencing the choice of {1*(¢q,p)} will

be the shape of S(a,p) (or its inverse T'). A typical shape for the curve T in a single node



model is shown in Figure 1 below.

Price 1

Quantity

Figure 1: Typical shape of rest-of-market offer curve

For an effective nodal demand of h, T'(h — ¢) will be the anticipated clearing price at
the node if the generator were to offer an amount ¢ into the node at no cost. We would
expect this function to take a large value when ¢ = 0 (the clearing price at the node if
the generator withdraws all its supply) and decrease monotonically to zero for large g.

The approach we follow is to construct ¢¥*(q,p) by specifying for each ¢ a density
function for p having a distribution that varies with ¢ in such a way that the contours of

1¥*(q, p) have a similar shape to the expected shape to T'(h — ¢). Formally we set

v*(q,p) = /_ ’ g% (2)dz.

where g®*(p) has the interpretation as being the probability density function of the clear-
ing price at the generator’s node if they were to offer an amount of electricity of ¢ at price
0.

As stated above, the choice of {g?“(p)} in this model should reflect the expected shape

of T(h—q). A model that appears to work well in practice is to let & = (v, 3) be bivariate,



and choose g to be a lognormal density, so that log p has a normal distribution with mean
it = 3 — agq. The variance of this normal distribution must be chosen with some care,
since a fixed variance will give a lower spread of outcomes (in (¢, p) space) for large o
values than we get for small o values. To correct for this, we choose the variance to be

o2(1 4 o?) for some fixed constant o. This gives

*(a.p) 1 logp _(z(—ﬁ+a)q>2 p
Q@ , — e 2 1-Q—o¢2 o2 z.
P 21(1 + a?)o J-wo

Given a prior density ¢(«, ) on the parameters o = («, /3) we obtain a market distribution
function

logp  (:—ptag)?
e 20+eh97 dzdodf3.

vlan) = [ =2 —1 —
The Bayesian update is defined by
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Thus given a dispatch of quantity ¢; at price p; we update ¢(a, #) by multiplying it by

(cq; —B+log py)>
_—rr . . . . . .
& 2+a%)0®  if the generator is dispatched on a horizontal section of its stack, and

NCToN

update ¢(«, #) by multiplying it by /—(1 o?

(aqi—l3+logpi)2
2(1-4—02)0‘2

if the generator is dispatched
on a vertical section of its stack. The final posterior distribution &(a, ) is then normalised

(by dividing through by [ &(a, B)dadf at the completion of this sequence of updates.)
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Observe that the methodogogy we describe uses no specific information about the
(multivariate) distribution of load. This is incorporated implicitly to some degree in the
estimation of &(a, ). The main reason for adopting this approach is its simplicity — the
only data required are observed dispatch quantities and prices at previous periods

course it is possible to incorporate ore in or ation into the esti ation procedure

or e a ple since there is a stron correlation bet een total syste de and and price
e 1 hti prove the esti ation by incorporatin syste de and observations in our
odel o this is done depends on the e ect that a chan e in de and has on other
participants he si plest odel assu es that their o ers do not vary ith de and

n this case i is the syste de and or a particular tradin period havin density

unction and e pectation
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