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Abstract

We apply the JuDGE optimization package to a multistage stochas-
tic leader-follower model that determines a transmission capacity ex-
pansion plan to maximize expected social welfare of consumers and
producers who act as Cournot oligopolists in each time period. The
problem is formulated as a large-scale mixed integer program and
applied to a 5-bus instance over scenario trees of varying size. The
computational effort required by JuDGE is compared with solving the
deterministic equivalent mixed integer program using a state-of-the-
art integer programming package.

1 Introduction

Capacity expansion modeling in the electricity industry has a long history
dating back to [19] for social planning models and [21] for investment in a
competitive setting. The liberalization of the electricity sector and the intro-
duction of electricity markets, which first emerged in the 1980s in countries
such as Chile, the United Kingdom, and New Zealand, has shifted many ca-
pacity expansion responsibilities away from a centralized entity and towards
private companies that can act strategically. In most electricity markets of
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developed countries transmission capacity and generation capacity are de-
cided by different entities, which mathematically speaking can be described
by multi-level optimization (and equilibrium) problems à la Stackelberg [30].
Since electricity generation plants and transmission lines are generally large
capital items with long lifetimes, their sizing and location must be chosen
carefully to ensure that they can accommodate future uncertainty. If they
are chosen suboptimally then they may either be insufficient to meet demand
(incurring losses from unmet load) or overbuilt (becoming stranded assets).

This paper describes a multistage stochastic programming model for plan-
ning the capacity expansion of a transmission network to maximize the in-
crease in expected social welfare produced by this investment. We treat
future uncertainty in the operating conditions of the electricity system as a
scenario tree that spans a long planning horizon (of say 30 years). At each
node of the scenario tree transmission investment choices are made based on
the history of the system up to that point in time. Between these points
in time, the electricity system is operated with the provided transmission
capacity to meet demand.

In our model the electricity supplied by generators is dispatched by an
independent system operator (ISO) and travels through the transmission
grid to satisfy demand at different locations. Generators supply energy un-
der varying conjectures on the effect that this supply will have on energy
prices. In the simplest setting generators are perfectly competitive and offer
all their available capacity at their (assumed constant) marginal costs. In
a risk-neutral setting this assumption gives a transmission planning model
that minimizes the expected social cost of the expansion using a stochastic
program.

An alternative model treats generators as Cournot players who anticipate
the effect of their generation on the clearing price assuming all other agents
fix their actions. In this model, generators compete strategically in the times
between each transmission investment, so the optimal transmission expan-
sion plan is not a straightforward system optimization. Here the transmission
investments are chosen to maximize the social welfare that would result from
generators acting strategically in competition using the transmission assets
available. This yields a multistage optimization problem in which the out-
come in each stage is the solution to an equilibrium problem, rather than an
optimization problem as in risk-neutral perfect competition.

To summarize, the model we have in mind has the following structure.
A transmission planner is to determine a plan of transmission investments
over a long time horizon that adapts to changes in circumstances as exoge-
nous market conditions (e.g. demand, fuel prices etc.) become revealed over
time. The plan accounts for the fact that in the time interval between each
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transmission expansion1, each generator in the network will choose a capac-
ity level, and generation amounts for each period in this interval that will
maximize its profits over this time interval, accounting for the actions of com-
peting generators in a Cournot oligopoly. The transmission investments of
the planner are chosen to maximize the total expected welfare of generators
and consumers less transmission capital costs over the planning horizon.

The approach we take to solving such a problem is to formulate a mul-
tistage stochastic mixed integer program, where binary variables are used
to represent the complementarity conditions that model the Cournot equi-
librium. In practical instances the deterministic equivalent version of this
problem is intractable, so we solve it using Dantzig-Wolfe decomposition as
implemented in the JuDGE package [9] written in the Julia language. JuDGE
enables the solution of problems of unprecedented scale using modest com-
puting resources.

The contributions of the paper can be summarized as follows:

1. We show how to formulate stochastic leader-follower games in the
JuDGE system to yield computationally tractable models;

2. We solve large-scale2 instances of these models and compare their solu-
tion times with those of deterministic equivalent Mixed Integer Prob-
lems (MIPs);

3. We compare optimal transmission capacity investment plans for prob-
lem instances under perfect and imperfect competition.

Multilevel or hierarchical optimization and equilibrium models have been
used by a number of authors (e.g. [3, 8, 17, 25, 31]) to represent sequential
decision making à la Stackelberg within wholesale electricity markets. When
it comes to electricity transmission expansion planning (TEP), modelers are
faced with a dilemma stemming from the corresponding timing of genera-
tion expansion planning (GEP). In proactive TEP the transmission system
is decided first and generators react by locating and sizing their generation
investments to take advantage of the grid. In reactive TEP the transmission
system is designed and built in response to growth in demand and genera-
tion expansion decisions. The choice of either a proactive model or a reactive

1There may be multiple transmission expansions or none at all before each uncertainty
node.

2In this context large-scale refers to problem instances of unprecedented scale for a
problem of this structure. Moreover, we want to stress that large-scale is used to describe
the size of the resulting overall MIP, and not the size of the power system instance that
we use for illustration.
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model identifies who are the leaders and who are the followers in the multi-
level game.

The model considered in this paper adopts a proactive transmission ex-
pansion approach. In the remainder of this section we discuss the literature
most relevant for the TEP problem tackled here. This literature review is by
no means exhaustive. For a more detailed literature review about transmis-
sion expansion planning, the reader is referred to [15, 34].

One of the first works on multi-level proactive TEP is presented by Sauma
and Oren [28], which is an extension of [27], where the authors explore the
impact of different objectives on TEP, considering policy implications and
anticipating responses of strategic GEP players with ownership structures
as proposed in [35]. The generation expansions are modeled as actions that
decrease the marginal cost of generation at every level. The model itself
has three levels: TEP, GEP and the market. In order to solve this very
complex type of nonconvex problem the authors formulate a Mathematical
Problem with Equilibrium Constraints (MPEC) representing the two lower
levels. This MPEC is solved iteratively, eliminating dominated GEP strate-
gies. The third layer is solved by an enumeration of TEP strategies and
repeating the iterative process. While [28] takes the first ambitious step into
modeling proactive multi-level TEP, it does not guarantee global optimality.

In [22], Pozo et al. propose the first complete formulation of a three-level
TEP problem. In the second level (the GEP stage), each strategic firm’s in-
vestment strategies are enumerated and expressed using a binary expansion.
Since generation capacity actions are discrete, conditions for a pure-strategy
Nash equilibrium can be expressed as a finite set of inequalities. There is
no guarantee that these have a solution. Nevertheless, this approach allows
the authors to formulate the full problem as an MPEC, which is transformed
into a Mixed Integer Linear Problem (MIP) by linearizing complementarity
conditions using binary variables as described in [14]. The optimal solution
of a MIP model gives a guarantee of global optimality for this nonconvex
problem. If the MIP is provably infeasible then one might suppose that no
pure-strategy Nash equilibrium exists, at least for the discrete approximation
of investment strategies. Demonstrating this computationally is challenging
for large problems that are difficult to solve at scale (e.g. if demands are
stochastic) because of the many “big-M” constraints.

To tackle large-scale problems, [24] develops a column-and-row decompo-
sition technique for solving the arising GEP and market-clearing equilibrium
problem, and applies this to a realistic power system in Chile with uncertain
demand. This technique ultimately yields the globally optimal solution and
greatly increases computational efficiency with respect to previous works,
while not compromising the rigor of the mathematical formulation.
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Alternatives to MIP formulations have also received some attention, al-
though these provide no guarantee that the solution found is a global opti-
mum. A hybrid approach to solving a three-level TEP problem is presented
in [18], which applies a diagonalization method to a complementarity formu-
lation to yield a convergent algorithm. In [1] the authors propose a stochastic
adaptive robust optimization model, which is solved by iterating between a
master and subproblems.

However, to ensure global optimality, the majority of multi-level TEP
models described in the literature (both deterministic and stochastic) are
solved as follows: the model is first formulated with complementarity con-
straints, which are then transformed into linear constraints using binary vari-
ables. The resulting MIP is then solved using commercial solvers. Examples
of such works are [2, 16, 20, 32]. As remarked above, this approach does not
scale well because of the “big-M” constraints. Since these constraints are
replicated for every state of the world represented in a stochastic model, the
approach is unsuitable for TEP problems with many scenarios, unless some
form of decomposition is applied.

In the literature, there have been works that applied decomposition tech-
niques to transmission expansion models. For example, [26] applied Ben-
ders decomposition; however, their model considers a more centralized type
of planning where both generation and transmission expansion planning is
taken in the upper level, and market clearing happens in the lower level. This
does however not account for strategic market feedback by generation com-
panies that can behave a la Cournot as in our model. Moreover, [24] resort
to the computationally more efficient column-generation technique; however,
their model substantially differs from ours in two aspects: they consider only
a finite number of generation expansion options and they only account for a
perfectly competitive market. Finally, [12] also uses column generation but
the first mover in their model is a merchant storage investor not a TSO,
and their market is also perfectly competitive. Hence, to the best of our
knowledge, this is the first example of a stochastic bilevel model that consid-
ers strategic feedback from both generation expansion and operation from a
market that can be both perfectly competitive or a Cournot oligopoly.

The rest of the paper is laid out as follows. In section 2 we formulate an
equilibrium-constrained model that determines optimal transmission capac-
ity investments when electricity producers behave as Cournot agents. Section
3 expands the model of the previous section to a multistage setting, where it
is formulated in a scenario tree. Section 4 then describes the JuDGE package
which applies Dantzig-Wolfe decomposition to investment planning problems.
Section 5 presents a case study that illustrates the model, and demonstrates
its computational performance as the number of scenarios increases. Section
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6 closes the paper with some concluding remarks.

2 Models with equilibrium constraints

The model we consider has a set of agents that compete to supply electricity
to consumers located at nodes of a transmission network in a set of trading
periods t ∈ T . Our model closely follows that of [27], which we summarize
here for completeness. To reduce notation, we only label the equations that
we refer to in the remainder of the paper. A complete nomenclature of
all parameters and variables is provided in the appendix of the paper. We
assume that consumption of electricity dkt at each node k of the network in
period t is modeled by a representative consumer with a quadratic utility
function akdkt− 1

2
bkd

2
kt. Given a price pkt, the consumer at node k maximizes

consumer surplus

akdkt −
1

2
bkd

2
kt − pktdkt

subject to dkt ≥ 0, so they solve

min
dkt≥0

pktdkt − akdkt +
1

2
bkd

2
kt.

This convex optimization problem has Karush-Kuhn-Tucker (KKT) condi-
tions

0 ≤ pkt − (ak − bkdkt) ⊥ dkt ≥ 0.

We denote each electricity plant by an index i, and use the notation
k(i) and i ∈ k to denote the location of each plant in the network, where
we assume that each generator operates exactly one plant. In our model
producer i simultaneously chooses a production capacity ui (costing Kiui)
and an amount of energy xit to supply to the market in every trading period
t ∈ T to maximize their total profit at price pk(i)t given the cost of capacity
and a marginal production cost cit.

It is useful to outline here how our approach differs from previous authors
([27], [28],[23], [22], [24]). They model capacity expansion by generators as a
second-stage decision that alters the marginal cost of producer i. Dispatch
decisions are made in a third stage of the game given the capacity decisions
of the generators. Optimal capacity decisions then give an equilibrium prob-
lem with equilibrium constraints (EPEC). In our model, generators choose
generation capacity at the same time as they choose operating quantities for
each period that uses this capacity. As outlined below, the system operator
chooses transmission quantities for each period at the same time as generator
decisions.
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Under Cournot conjectures, each generator and the system operator as-
sumes when optimizing that other generators’ capacity decisions and gener-
ation quantities in every time period are fixed. This is a form of open-loop
equilibrium which we can guarantee exists as the solution of simultaneous
KKT systems. In a more realistic subgame-perfect model agents would opti-
mize assuming others actions are fixed only in the same stage of the game,
and accounting for the payoffs that result from future (subgame) equilibria.

The optimization problem faced by producer i under these assumptions
is

P(i): min
∑

t∈T xit(cit − pk(i)t) +Kiui
s.t. xit − ui ≤ 0, t ∈ T ,

xit, ui ≥ 0, t ∈ T .
The KKT conditions for P(i) are

0 ≤ cit − pk(i)t − dpk(i)t
dxit

xit + λit ⊥ xit ≥ 0, t ∈ T ,
0 ≤ Ki −

∑
t∈T λit ⊥ ui ≥ 0,

0 ≤ ui − xit ⊥ λit ≥ 0, t ∈ T .

Here λit is the Lagrange multiplier on the generation capacity constraint
for generator i which provides a capacity rent every time this constraint is

binding. If we assume
dpk(i)
dxi

= 0 then these conditions represent perfectly

competitive producer behaviour. If we set
dpk(i)
dxi

= −bk(i) then producer i is
behaving as a Cournot agent. We distinguish between these two cases by
using a parameter ϕi that is set to bk(i) for Cournot producers and 0 for
perfectly competitive producers. (It is possible to study various levels of
imperfect competition by choosing ϕi ∈ [0, bk(i)] but we will confine ourselves
to the extreme cases in this paper.) If the transmission network has a single
node k then, with appropriate choices of ϕi, the market equilibrium is defined
by the complementarity problem

0 ≤ pk − (ak − bkdkt) ⊥ dkt ≥ 0, t ∈ T ,
0 ≤ cit − pkt + ϕixit + λit ⊥ xit ≥ 0, i ∈ k, t ∈ T ,
0 ≤ Ki −

∑
t∈T λit ⊥ ui ≥ 0, i ∈ k,

0 ≤ ui − xit ⊥ λit ≥ 0, i ∈ k, t ∈ T ,
0 ≤ ∑

i∈k xit − dkt ⊥ pkt ≥ 0, t ∈ T .

A transmission system with multiple nodes complicates this model when
competition is imperfect. It is well known (see e.g. [5, 10]) that there may
not exist a pure-strategy Cournot equilibrium, even in radial networks. To
overcome this, Yao et al. [35] present two models with different conjectures on
the bounded rationality of electricity producers. In the first of these models,
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agents assume that transmission flows are fixed and do not change in response
to their production choices. In the second model agents anticipate changes
in transmission flows from changes in production, but assume that price
differences between nodes do not vary as production changes. We adopt the
first of these models, so agents assume that transmission flows are unaffected
by their production choices.

The demand and suppliers have the same KKT conditions as before

0 ≤ pkt − (ak − bkdkt) ⊥ dkt ≥ 0, (1)

0 ≤ cit − pk(i)t + ϕixit + λit ⊥ xit ≥ 0,
0 ≤ Ki −

∑
t∈T λit ⊥ ui ≥ 0,

0 ≤ ui − xit ⊥ λit ≥ 0.
(2)

In time period t ∈ T the system operator given a transmission network
defined by lines (k, l) ∈ A, chooses line flows fklt, (k, l) ∈ A to solve

SO: min
∑

(k,l)∈A (pkt − plt) fklt
s.t. fklt ≤ τkl, (k, l) ∈ A,

fklt ≥ −τkl, (k, l) ∈ A,
Xklfklt = θkt − θlt, (k, l) ∈ A.

Here we adopt the convention that the flow fklt in transmission line (k, l)
is directed from k to l where k < l, and a negative value indicates a flow
from l to k. This means that A contains only ordered pairs (k, l) with
k < l. Transmission flows fklt must satisfy thermal capacity limits τkl, (k, l) ∈
A. The equality constraints (Kirchhoff’s Laws) are required to represent
transmission flows using a DC model, where θkt denotes the voltage phase
angle at node k, and Xkl is the reactance of line (k, l) ∈ A. For each time
period t ∈ T the problem SO has KKT conditions:

0 = pkt − plt + ρklt − σklt + µkltXkl ⊥ fklt, (k, l) ∈ A,
0 =

∑
l:(l,k)∈A µlkt −

∑
l:(k,l)∈A µklt ⊥ θkt, k ∈ K,

0 = Xklfklt − θkt + θlt ⊥ µklt, (k, l) ∈ A,
0 ≤ τkl − fklt ⊥ ρklt ≥ 0, (k, l) ∈ A,
0 ≤ τkl + fklt ⊥ σklt ≥ 0, (k, l) ∈ A.

(3)

The market clearing condition at each node k ∈ K in time period t ∈ T is

0 ≤
∑
i∈k

xit −
∑

l:(k,l)∈A

fklt +
∑

l:(l,k)∈A

flkt − dkt ⊥ pkt ≥ 0. (4)
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Collecting the complementarity conditions gives

MCP: (1), k ∈ K, t ∈ T ,
(2), i ∈ k, k ∈ K, t ∈ T ,
(3), (k, l) ∈ A, t ∈ T ,
(4), k ∈ K, t ∈ T ,

a mixed complementarity system that represents a competitive network equi-
lbrium. The social welfare W that results from this equilibrium is

W =
∑
k∈K

(∑
t∈T

(akdkt −
1

2
bkd

2
kt −

∑
i∈k

citxit)−
∑
i∈k

Kiui

)
. (5)

The problem of choosing transmission capacities to make the outcome of
the competitive equilibrium socially optimal is a mathematical program with
equilibrium constraints (MPEC). This transmission expansion planning prob-
lem can now be formulated as follows.

TEP: min
∑

(k,l)∈ACkl(τkl)−W

s.t. W =
∑

k∈K
(∑

t∈T (akdkt − 1
2
bkd

2
kt−

∑
i∈k citxit)−

∑
i∈kKiui,

0 ≤ pkt − (ak − bkdkt) ⊥ dkt ≥ 0, k ∈ K,
0 ≤ cit − pk(i)t + ϕixit + λit ⊥ xit ≥ 0, i ∈ k, k ∈ K,

0 ≤ Ki −
∑

t∈T λit ⊥ ui ≥ 0, i ∈ k, k ∈ K,
0 ≤ ui − xit ⊥ λit ≥ 0, i ∈ k, k ∈ K,

0 = pkt − plt + ρklt − σklt + µkltXkl ⊥ fklt, (k, l) ∈ A,
0 =

∑
l:(l,k)∈A µlkt −

∑
l:(k,l)∈A µklt ⊥ θkt, k ∈ K,

0 = Xklfklt − θkt + θlt ⊥ µklt, (k, l) ∈ A,
0 ≤ τkl − fklt ⊥ ρklt ≥ 0, (k, l) ∈ A,
0 ≤ τkl + fklt ⊥ σklt ≥ 0, (k, l) ∈ A,

0 ≤∑i∈k xit −
∑

l:(k,l)∈A fklt
+
∑

l:(l,k)∈A flkt − dkt ⊥ pkt ≥ 0, k ∈ K.

Here all constraints with index t are assumed to hold for all t ∈ T . The
problem TEP can be solved using standard nonlinear programming solvers
that exploit the complementarity structure of the lower level. However, TEP
is a non-convex optimization problem due to the complementarity condi-
tions in its constraints. Therefore, standard solvers will at best yield a local
optimum.

In order to achieve global optimality we convert TEP into a mixed integer
program. Complementarities are linearized introducing additional binary
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variables using the approach of Fortuny-Amat and McCarl [14]. This replaces
a complementarity condition such as

0 ≤ F (x, y) ⊥ x ≥ 0

by

0 ≤ x ≤Mz,

0 ≤ F (x, y) ≤M(1− z),

z ∈ {0, 1},

where M is chosen large enough to bound both x and F (x, y). Observe that
the complementarity conditions (3) require this construction for ρ and σ
only as the other conditions can be imposed in TEP as equality constraints.
Similarly we can simplify (4) by assuming that all nodal prices are strictly
positive and requiring∑

i∈k

xit −
∑

l:(k,l)∈A

fklt +
∑

l:(l,k)∈A

flkt − dkt = 0. (6)

The complete mixed integer programming formulation (MIQP) of TEP
can now be written out as follows. Please note that the constraints below that
correspond to the linearization of the complementarity constraints have been
tagged on the left-hand side by the original complementarity constraint. For
example, (2b) corresponds to the second complementarity contraint in (2).
Also, we suppress the dependence of constraints on t ∈ T and prefix each big
M constraint with the equation number of its corresponding complementarity
condition. This gives
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MIQP: min
∑

(k,l)∈ACkl(τkl) +
∑

k∈K
∑

i∈kKiui
+
∑

k∈K
∑

t∈T (1
2
bkd

2
kt − akdkt +

∑
i∈k citxit)

s.t. pkt − plt + ρkl − σklt + µkltXkl = 0, (k, l) ∈ A,∑
l:(l,k)∈A µlkt −

∑
l:(k,l)∈A µklt = 0, k ∈ K,

Xklfklt − θkt + θlt = 0, (k, l) ∈ A,∑
i∈k xit −

∑
l:(k,l)∈A fklt +

∑
l:(l,k)∈A flkt = dkt, k ∈ K,

(1) pkt − (ak − bkdkt) ≤Mzkt, k ∈ K,
dkt ≤M(1− zkt), k ∈ K,

(2a) ci − pk(i)t + ϕixit + λit ≤Mwit, i ∈ k, k ∈ K,
xit ≤M(1− wit), i ∈ k, k ∈ K,

(2b) Ki −
∑

t∈T λit ≤Mvi, i ∈ k, k ∈ K,
ui ≤M(1− vi), i ∈ k, k ∈ K,

(2c) ui − xit ≤Myit, i ∈ k, k ∈ K,
λit ≤M(1− yit), i ∈ k, k ∈ K,

(3a) τkl − fklt ≤Mrklt, (k, l) ∈ A,
ρklt ≤M(1− rklt), (k, l) ∈ A,

(3b) τkl + fklt ≤Msklt, (k, l) ∈ A,
σklt ≤M(1− sklt), (k, l) ∈ A,

ρklt, σklt, τkl, τkl + fklt, τkl − fklt ≥ 0, (k, l) ∈ A,
pkt − (ak − bkdkt) , dkt ≥ 0, k ∈ K,

ci − pk(i)t + ϕixit + λit, xit ≥ 0, i ∈ k, k ∈ K,
ui, xit, ui − xit, Ki −

∑
t∈T λit ≥ 0, i ∈ k, k ∈ K,

wit, vi, yit ∈ {0, 1}, i ∈ k, k ∈ K,
zkt, rklt, sklt ∈ {0, 1}, (k, l) ∈ A.

Observe that MIQP is a mixed integer program with convex quadratic
constraints. It is now standard for commercial MIP solvers (such as Gurobi)
to handle convex quadratic terms. It is also possible to approximate the
quadratic function 1

2
bkd

2
kt by a piecewise linear convex function so that MIQP

becomes a mixed integer linear program. Observe that care must be taken if
working with a coarse approximation of 1

2
bkd

2
kt as the KKT conditions that

appear in the constraints are based on 1
2
bkd

2
kt rather than its approximation.

The constraints of MIQP require some special attention in the case where
a new line is built joining k and l by choosing τkl > 0. In this case the set
of lines A is enlarged, which adds new constraints to MIQP. The capacity
of the new line is expressed in terms of expansion increments Tq, q ∈ Q and
binary variables κklq, so

τkl =
∑
q∈Q

κklqTq.
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It is well known that adding new transmission lines (even at zero cost) to a
DC-load flow model can lead to a loss of welfare akin to the Braess paradox of
traffic engineering [6]. In our model, welfare might be lost in some periods and
gained in others depending on the demand. To ensure that line investments
have nonnegative benefits, we assume that the system operator can switch
out a line in periods when it detracts from welfare so that adding a zero cost
line can never decrease welfare.

This feature is modeled by a binary variable ηklt that indicates if the line
(k, l) is being used. We enlarge A in the formulation MIQP to include all
potential arcs, so

A = {(k, l) : k < l, k, l ∈ K},
and replace

Xklfklt − θkt + θlt = 0, (k, l) ∈ A
by constraints

Xklfklt − θkt + θlt ≤ (1− ηklt)M, (k, l) ∈ A,
Xklfklt − θkt + θlt ≥ −(1− ηklt)M, (k, l) ∈ A,

fklt ≤ ηkltM, (k, l) ∈ A,
fklt ≥ −ηkltM, (k, l) ∈ A,
µlkt ≤ ηkltM, (k, l) ∈ A,
µlkt ≥ −ηkltM, (k, l) ∈ A
ηklt ≤

∑
q∈Q κklq, (k, l) ∈ A.

If ηklt = 0 for some t ∈ T then the new constraints set fklt and µlkt to
zero, and there is no constraint on −θkt + θlt. This has the same effect on
MIQP as removing the arc (k, l) from the index set A wherever it appears
in the equality constraints applying at t, without removing arc (k, l) from
the index set A in constraints (3) of MIQP. So capacity expansion τkl > 0
is possible even though the line (k, l) is not used in period t. On the other
hand, if τkl = 0 then (2) implies ηklt = 0 for all t ∈ T , and so the constraint
on −θkt + θlt is omitted.

3 Multistage transmission expansion

The transmission expansion problem MIQP provides a single opportunity
to invest in extra transmission capacity. We now explore how to extend
MIQP to a multistage problem in which transmission expansion decisions are
planned to be implemented over a long time horizon of twenty or thirty years.
In the multistage problem there are opportunities to be flexible in choosing
investments. For example, the planner may wish to delay investment until
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there is more certainty about future demand, or make capacity decisions now
that provide some flexibility for future augmentation.

Flexibility is important since many of the parameters in MIQP (denoted
by the vector ξ) will be realized some time in the future, and so they will
be subject to considerable uncertainty. The possible values that they take
can be represented using a scenario tree with nodes n ∈ N and leaves in
L. At each node in this tree we acquire some new information and make a
transmission investment decision based on the information we have accrued
up that point. The time intervals between these decision points depend on
the particular setting, but we imagine they are measured in years rather
than hours (like t ∈ T ) so we index the decision points by y ∈ Y . A pictorial
representation of a scenario tree with four time stages is given in Figure 1.

0 2

1

3

6

5

4

7

8

13

12

11

10

9

14

15

1+ = {4, 5}
|1+| = 2

L = {9, 10, 11, 12, 13, 14, 15}

3+ = {7, 8}

P(8) = {8, 3, 0}

δ(0) = 1 δ(2) = 2 δ(6) = 3

δ(12) = 4

Figure 1: A scenario tree with nodes N = {0, 1, . . . , 15}, and Y = 1, 2, 3, 4.

The probability of the event represented by node n is denoted φ(n). By
convention we number the root node n = 0. The unique predecessor of node
n 6= 0 is denoted by n−. We denote the set of children of node n ∈ N \L by
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n+, and denote its cardinality by |n+|. The set of predecessors of node n on
the path from n to node 0 is denoted P(n) (so P(n) = {n, n−, n−−, . . . , 0}),
where we use the natural definitions for n−−. The depth δ(n) of node n is
the number of nodes on the path to node 0, so δ(0) = 1 and we assume that
every leaf node has the same depth, say δL. The depth of a node δ(n) can
be interpreted as its time index y ∈ Y . At node n of the scenario tree the
parameters of MIP are assumed to take values ξ(n). We use the notation
(#(n)) to denote the set of constraints (#) for MIP applied at at node n by
substituting the parameters ξ(n) for ξ, and making all variables assume the
extra index n. Thus for example (4) becomes

0 ≤
∑
i∈k

xit(n)−
∑
l

fklt(n) +
∑
l

flkt(n)− dkt(n) ⊥ pkt(n) ≥ 0.

Given realizations for the random parameters in each state of the world,
we now consider a multistage stochastic transmission expansion model. Let
T 0
kl be the initial value of transmission capacity between bus k and l, where
k < l. For each such pair (k, l) and node n recall the binary variable κklq(n)
that denotes an expansion in node n of line capacity of type q ∈ Q (adding
an increment Tq(n) and costing an extra amount cklq). The total capacity of
the line (k, l) in node n is then

τkl(n) = T 0
kl +

∑
p∈P(n)

∑
q∈Q

κklq(p)Tq(p). (7)

The objective function that the system planner seeks to minimize is the
expected cost of the transmission expansion minus the expected social benefit
that it creates, giving∑

n

φ(n)(
∑
k,l,q

cklqκklq(n)−W (n)). (8)

There will be a set of constraints in each node n of the scenario tree that
define the operations that will be in equilibrium in that state of the world.
These constraints are exactly those of MIQP, reproduced so each variable
and parameter assumes an extra index “(n)”. The multistage transmission
capacity expansion problem then takes the form of a multistage stochastic
mixed integer program. Since the number of nodes in the scenario tree grows
exponentially with the number of stages, the number of binary variables in
the deterministic equivalent version of the multistage transmission capacity
expansion problem grows rapidly, and the large-scale problem becomes im-
possible to solve. The JuDGE package enables us to attack this problem
using decomposition (which splits the deterministic equivalent problem into
many smaller MIPs).
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4 JuDGE

JuDGE (which stands for Julia Decomposition for Generalized Expansion)
[9] is an open-source Julia [4] package for solving multistage stochastic ca-
pacity expansion problems, and is based on the Dantzig-Wolfe decomposition
algorithm specialized to capacity expansion by Singh et al. in [29]. Specifi-
cally, JuDGE implements a variant of their split-variable formulation, called
the SV1 model, where each investment decision is binary, and so can be built
at most once for each scenario. Fortunately, however, this is not particularly
restrictive, since we are able to define separate investments that are additive,
with the effect of allowing multiple upgrades (with additive costs).

The JuDGE package provides a core modelling framework for defining
a scenario tree, with corresponding nodal subproblems, utilizing the JuMP
package [11] in order to define both the back-end master problem, and the
front-end, user-customizable subproblems and investment variables. JuDGE
automates the Dantzig-Wolfe column-generation procedure and computes
upper and lower bounds as the problem is solved.

We have implemented the multistage transmission expansion problem
described in section 3 using JuDGE. This model is specified in terms of a
scenario tree (with corresponding probabilities), the investment variables,
and the subproblems, which in our case is the MIP model (with appropriate
parameters for each node of the scenario tree), as described in section 2,
defined as JuMP models. JuDGE also provides functionality to automatically
generate a deterministic-equivalent formulation of the JuDGE model; we
have utilized this for our computational results in section 5.

The core decomposition method of JuDGE, involves constructing a re-
stricted master problem (SV1-RMP, below, which has been reproduced from
[29], with modified notation) which defines the non-anticipativity constraints
for the investments. The master problem does not strictly enforce integrality.

SV1-RMP: min
∑
n∈N

φnc
>
nκ
′
n +

∑
n∈N

∑
j∈Jn

φnψ
j
nω

j
n

s.t.
∑
j∈Jn

κ̂jnω
j
n ≤

∑
h∈P(n)

κ′h, n ∈ N , [πn] (9)

∑
j∈Jn

ωj
n = 1, n ∈ N , [νn] (10)

ωj
n ≥ 0, n ∈ N , j ∈ Jn,

κ′n ≥ 0, n ∈ N .
Here κ′n is the vector of (binary) investments chosen to be made for node
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n; naturally, these investments will also be available for all descendants of
node n. ωj

n are weightings that are used to form convex combinations of the
columns, j ∈ Jn corresponding to each node n. For node n, the jth column
has investments κ̂jn, and has a corresponding cost of operations ψj

n. The dual
vectors πn associated with (9) can be thought of as the marginal costs of
utilizing investments in node n.

When the restricted master problem is solved, it will seek some con-
vex combinations of columns, j ∈ Jn for each node n, as enforced by
constraint (10). Together, the corresponding investments must satisfy the
non-anticipativity constraints (9), and minimize the overall investment and
operational costs.

The details of the algorithm are provided in [29, 9], but the main loop
of JuDGE is a column generation procedure, which we will briefly outline.
Suppose we solve SV1-RMP, given some sets of columns for each node, and
compute the optimal objective function value as z for this restricted master
problem. For each node, the method seeks to find the column with the most
negative reduced cost for SV1-RMP; this minimum reduced cost for node
n is RC(n) = ψj

n − π>n κ̂
j
n − νn. If this is negative, we add this column to

SV1-RMP for the next iteration. This column generation will continually
improve the objective of the restricted master problem, thereby reducing the
upper bound. This also enables us to compute a valid lower bound z for the
optimal objective function value (z∗) of the full master problem.

z∗ ≥ z = z −
∑
n∈N

RC(n).

Moreover, this lower bound is tight, since at the optimal solution the smallest
reduced cost for every node will be 0, providing a certificate of optimality for
the relaxed master problem.

This procedure can often result in a naturally integer optimal solution;
however, in some cases this solution can be fractional. For such instances
JuDGE provides an implementation of branch-and-price, described in [9].
This will branch on fractional investments, making use of the column gen-
eration procedure and lower bounds, as outlined above, in order to find
provably-optimal integer solutions.

5 Results

In this section we present a case study illustrating the stochastic MPEC
solved using JuDGE, and the computational results of JuDGE applied to
some large problem instances.
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5.1 Illustrative Case Study

To illustrate the model, we solve an instance of the multistage transmission
expansion problem for a 5-bus transmission network over a scenario tree with
7 nodes. Please note that for clarity we will say bus (and use notation k and
l in referring to buses) when referring to the transmission power network,
and node (and use nomenclature n) when we refer to the stochastic tree.

Figure 2: 5-bus transmission network with possible candidate lines indexed
1 to 6, and percentage of demand intercept in parentheses.

Figure 2 shows the 5-bus power network, where numbers in parenthesis
correspond to the percentage of the total demand observed at each bus k
when all prices are zero. The 6 lines drawn between the buses define the
candidate lines that the model can build.

The constraint (7) defines the expansion of line (k, l) in node n by binary
decision variables κklq(n) that add fixed increments Tq(n) to the transmission
line. In our case study we assume T 0

kl = 0 and possible expansion increments
are the same for all n, as defined by Table 1. The cost of the transmission
expansion decision for line (k, l) in node n is then

∑5
q=1 cklqκklq(n), and the

amount of transmission capacity this yields in node n is
∑

p∈P(n)
∑5

q=1 κklq(p)Tq.
All lines built are assumed to yield equal values of reactance between their
endpoints, and line expansion costs cklq are chosen to be proportional to Tq.

The consumer utility at bus k gives a linear demand function ak
bk
− 1

bk
p for

demand at price p. We set bk =10 Me/(GWh)2 at each node k, and let ak
depend on the bus and the nodes of the scenario tree. In the root node of
the tree ak takes the values shown in Table 2.
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q Tq(MW)
1 40

2 100
3 160
4 250
5 460

Table 1: Values of expansion increments Tq.

Bus k ak(Me)
1 2.421

2 2.421
3 3.228
4 4.035
5 4.035

Table 2: Values of ak at each bus k. Total demand at zero price is 1614 MW
shared amongst buses according to the percentages shown in Figure 2.

Table 3 and Table 4 contain generator and line data respectively. Note
that the investment costs Ki and cklq/Tq represent annual investment costs
per MW of generation capacity and transmission capacity respectively. Since
in our case study we only solve for one representative hour, these investment
costs are deflated by 8760 in the model to represent the hourly investment
costs. We also discount all costs and welfare in nodes 1 and 2 by the factor
0.9, and by 0.81 in nodes 3,4,5,6. Base power is 0.1 GW, and the cost of CO2

emissions is set at 18 e/tonne.
The scenario tree has depth 3 and degree 2, leading to a total of 7 nodes

and 4 scenarios as depicted by Figure 3. At each node n of the stochastic tree
we scale ak by the factor shown to give ak(n). Here scenarios 3 and 4 have no
growth in demand in the southern buses 1, 2 and 3, but growth in demand in
buses 4 and 5. In contrast, scenarios 5 and 6 experience growth in demand
in the southern buses 1, 2 and 3, but none in the north. All scenarios are
assumed to have equal probability.

We now present the results of applying JuDGE to three instances of this
stochastic problem. The first instance (Competitive) assumes all agents are
perfectly competitive so we set ϕi = 0 for every i. In the second instance
(Coal) we set we set ϕ1 = 10 (Cournot) for the coal-fired generator (i = 1)
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Generator Bus Type ci Ki Emission Rate
i k(i) (e/MWh) (ke/MWy) tCO2/MWh

1 5 Coal 28 19.0 0.9
2 1 CCGT 41 8.0 0.3
3 1 CCGT 41 8.0 0.3
4 2 CCGT 41 8.0 0.3

Table 3: Generator data.

From To Line reactance Investment cost
k l Xkl (p.u.) cklq/Tq (ke/MWy)

1 4 0.030 1860
4 5 0.030 1800
1 2 0.030 1900
1 5 0.030 1810
3 5 0.030 1820
2 3 0.030 1830

Table 4: Line data.

and assume all other generators are perfectly competitive. Finally in the
third instance we set ϕi = 10 for every i, which corresponds to all generators
acting as Cournot oligopolists. All results are reported in terms of total
system welfare, which is maximized by JuDGE.

5.1.1 Competitive generators

The first experiment assumes that all generators are perfectly competitive so
ϕi = 0 for every i. JuDGE gives the line investments shown in Table 5.

Observe that in node 0 of the scenario tree the optimal solution builds
lines 2, 5 and 6. Line 2 connects the demand at bus 4 to the coal generator
at bus 5, lines 5 and 6 connect the demand at buses 2 and 3 to the coal
generator at bus 5. All of the demand in buses 1, 2 and 5 is met by local
generators, bus 4 imports all power to meet demand from the coal generator
at bus 5, finally bus 3’s demand is met by a combination of the coal generator
from bus 5 and the CCGT generator at node 2.

In nodes 2, 5 and 6 of the scenario tree, where the demand grows in the
south (buses 1, 2, 3, as shown Figure 3), we observe further expansions in
line capacity in line 5 (between buses 5 and 3) and line 6 (between buses 2
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0

1

2

3

4

5

6

[1 1 1 1 1]

[1 1 1 1 2]

[2 2 3 1 1]

[1 1 1 1 2]

[1 1 1 2 2]

[2 2 4 1 1]

[3 4 4 1 1]

Figure 3: A scenario tree with 7 nodes N = {0, 1, . . . , 6}, and Y = 1, 2, 3.
The vector s(n) shown at each node n scales ak by sk(n) at bus k.

Line 1 2 3 4 5 6
n=0 0 390 0 0 160 160
n=1 0 390 0 0 160 160
n=2 0 390 0 0 720 260
n=3 0 390 0 0 160 160
n=4 390 390 0 0 160 160
n=5 0 390 0 0 1010 260
n=6 0 390 0 0 1010 260

Table 5: Optimal line capacities (MW) by scenario node for perfect compe-
tition. Total expected discounted welfare = 17.0151 M Euro.

and 3). However, in node 4 of the scenario tree we have increasing demand
in bus 4 in scenario node n = 4 (shown by s4(4) = 2 in Figure 3); here we
observe that line 1’s capacity is expanded to enable the CCGT at bus 1 to
supply the demand at bus 4.

We can compare the solution in Table 5 with solutions obtained in each
of the four scenarios as shown in Table 6. The expected welfare in Table 6 is
slightly higher, since the transmission investment solution can adapt to each
scenario, for example by making expansion decisions for line 5 in stage 1 of
0MW in scenarios 1 and 2, but 160MW in scenarios 3 and 4 (to be expanded
to 1010 MW by stage 3).

Finally the solution in Table 5 can be compared with the solution obtained
by averaging demand outcomes over the four scenarios in each time period.
This gives the solution shown in Table 7. Expected welfare from this solution
is lower than that in the optimal solution to the stochastic problem because
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scenario stage l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
1 1 0 390 0 0 0 300
1 2 0 390 0 0 0 300
1 3 0 390 0 0 0 300

2 1 0 410 0 0 0 300
2 2 0 410 0 0 0 300
2 3 260 510 0 0 0 300

3 1 0 390 0 0 160 160
3 2 0 390 0 0 720 260
3 3 0 390 0 0 1010 260

4 1 0 390 0 0 160 160
4 2 0 390 0 0 720 260
4 3 0 390 0 0 1010 260

Table 6: Total invested line capacities (MW) optimized for each scenario
under perfect competition. Total expected discounted welfare = 17.0153 M
Euro.

of reduced investment in the high demand scenarios. Thus the value of a
stochastic solution is high in this case, as the flexibility it affords nearly
captures all the possible value that would accrue from solving the problem
with perfect foresight.

Line 1 2 3 4 5 6
y=1 0 410 0 0 350 0
y=2 0 410 0 0 390 250
y=3 40 450 0 0 390 390

Table 7: Total invested line capacities (MW) by stage y for perfect competi-
tion. Total expected discounted welfare = 14.4746 M Euro.

5.1.2 Coal monopolist

The first experiment assumed that all generators are perfectly competitive.
We relax this assumption by setting ϕ1 = 10 for the coal generator at bus 5.
Under the conjectural assumptions made here (as in [35]), the coal generator
behaves as a local monopolist at bus 5, to meet demand in this node without
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accounting for the effect of their actions on transmission flows. JuDGE gives
the line investments shown in Table 8.

Line 1 2 3 4 5 6
n = 0 390 0 0 460 0 300
n = 1 390 0 0 760 0 300
n = 2 390 0 0 460 0 1010
n = 3 390 0 0 760 0 300
n = 4 850 0 0 760 0 300
n = 5 390 0 0 560 250 1010
n = 6 390 0 0 560 250 1010

Table 8: Optimal line capacities (MW) by scenario node for perfect compe-
tition with monopolist coal generator at bus 5. Total expected discounted
welfare = 16.8674 M Euro.

In this example it is welfare enhancing to expand line 4 that connects
buses 1 and 5. This enables the price-taking CCGT generator at bus 1 to
send power to consumers in bus 5 to alleviate the price-setting behaviour
of the coal generator at this location. In scenario-tree nodes 5 and 6 when
demand is high in bus 3, line 5 is expanded to carry some the power from
bus 1 to bus 3, via bus 5.

5.1.3 Cournot generators

We now assume that all generators are strategic, and set ϕi = 10 for all i.
JuDGE gives the line investments shown in Table 9.

Line 1 2 3 4 5 6
n = 0 250 0 40 0 0 160
n = 1 250 40 40 260 0 160
n = 2 250 40 40 250 500 160
n = 3 250 40 40 260 0 160
n = 4 390 140 0 260 40 160
n = 5 250 40 40 260 160 260
n = 6 250 40 200 260 260 160

Table 9: Optimal line capacities (MW) by scenario node for Cournot com-
petition. Total expected discounted welfare = 12.6764 M Euro.
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This solution builds less capacity in line 4, than for the previous example
(Table 8), since the generators at bus 1 are no longer behaving competitively,
so there is less value in transporting power from the CCGTs at bus 1 to the
demand at bus 5.

The Cournot example also gives some indication of the efficiency gains
from JuDGE that we explore more fully in the next section. We formulated
this problem both as a JuDGE model and as a deterministic-equivalent MIP
using Gurobi 9.02 as the solver. Figure 4 shows that the JuDGE decompo-
sition solves to a bound gap of 0.1% within 500s, whereas the deterministic
equivalent still has a bound gap exceeding 20% after two hours of CPU time
and the best integer solution it has found by this point is still some distance
from optimality (indicated by the grey dashed line).
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(a) JuDGE decomposition.
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Figure 4: Comparison of convergence for Cournot agent model.

5.2 Computational Efficiency

In this section we present the results of some experiments that explore the
computational efficiency of the JuDGE implementation when applied to the
5-bus network data of section 5.1. As shown in Figure 4 the deterministic
equivalent MIP failed to solve this problem with Cournot agents. Here we
investigate the effect of both increasing the size of the scenario tree and
increasing the number of time periods (t ∈ T ) on JuDGE computation time
in comparison with the deterministic equivalent MIP.
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5.2.1 Scenario tree size

To do this, we construct scenario trees of varying maximum depth and
degree with randomly generated demand growth data, with Cournot agents.
Here we use the notation (d,m) to denote a tree with degree d and maximum
depth of m, giving 1 + d+ d2 + . . . dm−1 nodes. The computational results of
applying JuDGE to the 5-bus problem with these trees are shown in Table
10.

All computations are carried out on a virtual machine with an Intel Xeon
E5-2690 with 16 cores @1.90GHz and 128GB RAM running under Windows
Server 2013. The solver we have used in JuDGE is Gurobi 9.02. The con-
vergence criterion for the stochastic MPEC using JuDGE is set to a 1%
relative gap. In other words JuDGE terminates when the difference between
the upper and lower bound on the optimal objective value is less than 1%
of the upper bound. The objective referred to here is expected total dis-
counted welfare. JuDGE returns a candidate integer solution (Incumbent)
and an upper bound on its value (BestBd). We report the actual relative
gap using the best integer solution found, where the relative gap is defined
to be BestBd-V (Incumbent) divided by V (incumbent). This is occasionally
significantly smaller than the termination tolerance, due to the nature of the
algorithm.

Tree Nodes V (Incumbent) BestBd Gap (% ) Time (s)
(3, 3) 13 8.2417 8.3238 0.99 121.3
(3, 4) 40 12.5860 12.7126 1.00 131.1
(3, 5) 121 19.5999 19.7772 0.90 224.6
(3, 6) 364 37.6992 37.9116 0.56 881.7
(5, 3) 31 9.1504 9.2393 0.97 217.7
(5, 4) 156 16.1912 16.3403 0.92 484.8
(5, 5) 781 49.4345 49.6743 0.48 1683.1
(9, 3) 91 10.8957 10.9963 0.92 395.2
(9, 4) 820 32.1330 32.3357 0.63 1460.2

Table 10: JuDGE CPU times for solving 5-bus Cournot model with different
size scenario trees.

The deterministic equivalent problems all failed to solve within two hours
on these problems. In many cases they failed to find any integer solutions.
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5.2.2 Varying the number of time periods

The second set of experiments that we have carried out examines how
the solution time scales as we increase the number of time periods in each
node of the scenario tree. We will extend the coal monopolist example from
section 5.1.2, for a scenario tree of depth 3 and degree 3 (13 nodes), with
the number of time periods per node (|T |) increasing from 1 to 12. For
each problem instance, we solve the model using JuDGE, and compare this
with the deterministic equivalent MIP, both stopping when they reach a
1% bound-gap. The results are plotted on a log-scale in Figure 5 below.
From these results we can see that for small problems, with fewer than 6
time periods per node, the deterministic equivalent formulation outperforms
JuDGE. However, for larger problems where there are 7-12 time periods per
node, the decomposition method solves 2-3 times faster. As an example,
the model with 9 time periods takes more than 30 minutes to reach a 1%
bound-gap for the deterministic equivalent, whereas JuDGE solves the same
problem in under 10 minutes.
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Figure 5: Comparison of solve times for the JuDGE decomposition and the
deterministic equivalent model with varying numbers of time periods per
node.
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6 Conclusion

We have presented a model for socially optimal transmission capacity ex-
pansion that can be applied to settings with electricity generators behaving
either as perfectly competitive or Cournot players. Note (see [33]) that it
is possible to choose the parameter ϕi ∈ (0, bk(i)) to model the behaviour of
generator i as falling between these extremes. The structure of our model
enables one to study changes in agent behaviour that evolve randomly over
time (perhaps in response to evolving regulatory intervention).

The representation of generator capacity expansion in our model could be
made more realistic. We assume that generator capacity decisions are made
in each node of the scenario tree, independently of previous generation ca-
pacity decisions, and are made following the transmission capacity decisions
that are made in that node. However generation capacity has a long life, and
so a generator would need to account not only for the history of her actions
when making a capacity decision in a given state of the world, but also the
possible future states of the world in which this capacity will be used. An
arguably more realistic model here would be an optimal transmission plan
formulated in a scenario tree that accounts for a dynamic equilibrium for
generators (formulated in the same tree) that uses the planned transmission.
Unfortunately this model does not admit a decomposition by node that is
required to apply JuDGE.

The deterministic MIPs that result from our model can be at very large
scale, and have many “big-M” logical constraints, so they are computation-
ally challenging for current MIP solvers. By decomposing into many smaller
MIPs, the JuDGE platform enables a multistage stochastic model with many
scenarios to be formulated and solved to a high degree of accuracy.

The examples we have presented show that JuDGE can (approximately)
solve realistic instances of these models with modest resources. In practice
the instances to be solved will have many more electrical buses and might
involve short-term variations in intermittent renewable energy supply and
random plant outages. This makes each subproblem a stochastic MPEC
which will yield a very large deterministic equivalent problem that will not
be solvable using current MIP solvers. Decomposition techniques like JuDGE
provide some hope of discovering optimal transmission plans for such prob-
lems.

All our models maximize expected discounted welfare. The discount fac-
tor can be chosen to represent a risk-adjusted cost of capital as defined by a
CAPM methodology [7]. Alternatively the model can be modified to incor-
porate a dynamic risk measure for the transmission planner. Incorporating
a (possibly different) risk measure for each generator then gives a JuDGE
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optimization subproblem with risked-equilibrium constraints as studied by
[13].
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Nomenclature

Parameters

T = set of time periods t ∈ T
K = set of buses k (or l) ∈ K
A = set of transmission lines (k, l) ∈ A
Q = set of transmission capacity increments q ∈ Q
N = set of nodes n ∈ N in scenario tree
L = set of leaves in scenario tree
Y = set of decision points y ∈ Y in scenario tree

P(n) = set of predecessors of node n
i ∈ k = generator i at bus k
k(i) = bus location for generator i, i.e. k such that i ∈ k
ak = inverse demand curve intercept at bus k
bk = inverse demand curve slope at bus k
cit = marginal cost of generator i in period t
Xkl = transmission line reactance for line from k to l
Ki = cost per MW of expanding capacity of generator i
ϕi = competition parameter for generator i
Ckl = cost of expanding transmission capacity for line from k to l
M = large scalar used for linearisation

ξ(n) = uncertain parameters at node n
Tq = transmission increment q
T 0
kt = initial value of transmission capacity between bus k and l

δ(n) = depth of node n in scenario tree
φ(n) = probability of the event represented by node n
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Variables

τkl = transmission capacity choice for line from k to l
ui = capacity choice of generator i
xit = output of generator i in period t
fklt = transmission flow in line from k to l in period t
dkt = demand at bus k in period t
pkt = price at bus k in period t
θkt = voltage phase angle at bus k in period t
λit = dual variable on generator i capacity constraint in period t
µklt = dual variable on voltage law constraint for line from k to l in period t
ρklt = dual variable on capacity constraint for line from k to l in period t
σklt = dual variable on (reverse) capacity constraint for line from k to l in period t
κklq = binary variable to decide transmission capacity increment q on line from k to l
zkt = binary variable used in linearisation of complemenarity constraints
wit = binary variable used in linearisation of complemenarity constraints
vi = binary variable used in linearisation of complemenarity constraints
yit = binary variable used in linearisation of complemenarity constraints
rklt = binary variable used in linearisation of complemenarity constraints
sklt = binary variable used in linearisation of complemenarity constraints
W = social welfare
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