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My background

Electricity markets.

Capacity planning for zero-carbon energy systems.

Optimization of stored hydroelectricity
I developed doasa model of New Zealand electricity system
I doasa uses the Stochastic Dual Dynamic Programming (SDDP)
algorithm (Pereira and Pinto, 1991).

I led to SDDP.jl implementation in julia (Dowson and Kapelevich, 2021).
I SDDP.jl used by New Zealand electricity companies and regulator.

Recent work with students has applied SDDP.jl to truck revenue
management.

I inspired by problems faced by a NZ startup company.
I based on previous work on SDDP with Garrett van Ryzin and Michael
Frankovich.
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Network revenue management: known capacity and due
date

m network arcs and n shipments arriving over a time horizon of T
stages for shipment at end of stage T .

available truck capacity for each arc at start of stage t denoted
x(t) = (x1, x2, . . . , xm).
shipment j uses aij units of truck capacity on network arcs i , and has
a price pj
matrix A = [aij ] with jth column Aj .
demand for shipment j follows a Poisson process, so in each stage t
at most shipment request arrives.

model as a random revenue vector P(t) = (P1(t),P2(t), . . . ,Pn(t))

Pj (t) =
{
pj , if a request for shipment j occurs,
0, otherwise.
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Example with three trucks
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Example with three trucks
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Dynamic programming model

Rt (x) the maximum expected revenue that can be earned in periods
t, t + 1, . . . ,T , when x(t) = x (Bellman function).
(random) booking action U ∈ U (x) = {0, 1}n ∩ {u : Au ≤ x}
dynamics

X(t + 1)= x(t)−AU(t)
Bellman function

Rt (x) = E[ max
U∈U (x)

{P(t)>u+Rt+1(x−Au)}]

with
RT+1(x) = 0.
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Optimal policy

Given Rt+1(x), and a realization (0, 0, . . . , pj , 0 . . . , 0) of P(t) the optimal
policy is solution to

max
u∈{0,1}

{pju + Rt+1(x−Aju)}

where Aj is jth column of A.

Solution

u∗j (t, x, pj ) =
{
1, if pj ≥ Rt+1(x)− Rt+1(x−Aj ),
0, otherwise.
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Random truck capacity

Replace dynamics
X(t + 1)= x(t)−AU(t)

with
X(t + 1)= x(t)−AU(t) + δX(t)

where δX(t) is a random change in truck capacity x (c.f. random inflow
into a hydroelectric reservoir).
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Dynamic programming model

Rt (x) the maximum expected revenue that can be earned in periods
t, t + 1, . . . ,T , when x(t) = x (Bellman function).
u ∈ U (x+ δX), where U (x) = {0, 1}n ∩ {u : Au ≤ x}

Rt (x) = E[ max
u∈U (x+δX)

{P(t)>u+Rt+1(x−AU+ δX(t)}]

with
RT+1(x) = 0.
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Optimal policy

Given Rt+1(x), and a realization (0, 0, . . . , pj , 0 . . . , 0) of P(t),and a
realization δx of δX(t) the optimal policy is solution to

max
u∈{0,1}

{pju + Rt+1(x−Aju+δx)}

where Aj is jth column of A.

Solution

u∗j (t, x, pj , δx) =
{
1, if pj ≥ Rt+1(x+ δx)− Rt+1(x−Aju+δx),
0, otherwise.
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Different delivery dates (no new trucks)

Suppose delivery due dates (previously T ) are now d = 1, 2, . . .
For each d , and each t ≤ d , compute Rdt (x) the maximum expected
revenue earned at end of d when xd (t) = x.
Maintain a state xd (t) for each future d .
Shipping requests u with fixed delivery date d are accepted if
pj ≥ Rdt+1(xd )− Rdt+1(xd −Aju)
Can train Rdt (x) (e.g. in parallel) for each d , and each t ≤ d .
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Flexible delivery dates (no new trucks)

Suppose delivery due dates for a shipment can be any d ∈ D.
Shipping requests u with flexible delivery date d are accepted if
pj ≥ mind∈D{Rdt+1(xd )− Rdt+1(xd −Aju)}
State xd updated to xd −Aju for best delivery date which is locked
in at contract.

Rdt (x) can be trained based on this rule. Gives a potentially lower
revenue than optimal as no opportunity to rebalance trucks closer to
d .
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Flexible delivery dates with reallocation (no new trucks)
Every time period we reallocate accepted shipments to trucks.
Suppose we receive a request for u with delivery date d , but
pj < Rdt+1(x

d )− Rdt+1(xd −Aju)
Previous accepted shipment k that uses resources Adk could shift
delivery from day d to d ′ with d ′ ∈ D. Let

v kd
′
=

{
1, if shift shipment k to d ′

0, otherwise
.

This gives a change of xd to xd +Adk v
d ′ −Aju and a change of xd

′

to xd
′ −Adk vd

′
.

Solve

max
pju + Rdt+1(x

d +∑k Adk ∑d ′∈D v
kd ′ −Aju)

+∑d ′∈D R
d ′
t+1(x

d ′ −∑k Adk v
kd ′)

s.t. ∑d ′∈D v
kd ′ ≤ 1, k ∈ K ,

u, v kd
′ ∈ {0, 1}, k ∈ K , d ′ ∈ D.
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Continuous approximation
Since U (x) = {0, 1}n ∩ {u : Au ≤ x} is a discrete set, Rt (x) may be a
discontinuous function. A continuous (outer) approximation
Vt (x) ≥ Rt (x) can be obtained by setting

U (x) = [0, 1]n ∩ {u : Au ≤ x}

which makes Vt (x) continuous and concave. If π is a supergradient to Vt
at x then for any column Aj of A we have Vt (x) ≥ Vt (x−Aj ) +π>Aj
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Bid-price approximation

A bid-pricing policy uses the approximation

Vt+1(x+ δx)− Vt+1(x−Aj+δx) ≈ π>Aj

for some vector π of bid prices that approximates the supergradient. Then

u∗j (t, x, pj , δx) =
{
1, if pj ≥ π>Aj ,
0, otherwise.
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Linear programming approximation

DLP(x,E[D(t)]): max p>y
s.t. Ay ≤ x+E[C(t)]

0 ≤ y ≤ E[D(t)]

Dj (t) is expected demand remaining for fare-product j in t, t + 1, . . . ,T .
Ci (t) is sum of capacity increments δxi (t) for leg i over t, t + 1, . . . ,T .
Optimal dual solution π corresponding to x gives the DLP-bid pricing. So

Vt+1(x)− Vt+1(x−Aj ) ≈ π>Aj .

Bid prices are updated by re-solving DLP(x,E[D(t)],E[C(t)]) as booking
horizon unfolds.
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Supergradients

DLP(x,d, c) : max p>y
s.t. Ay ≤ x+ c

0 ≤ y ≤ d

DLP∗(x,d, c) : min π>(x+ c) + ρ>d
s.t. A>π + ρ ≥ p

π ≥ 0

(πk , ρk ) optimal for DLP
∗(xk , dk , ck ) implies (πk , ρk ) feasible for

DLP∗(x , d , c) for any (x , d , c) so

π>k (xk+ck ) + ρ>d>k = V (DLP(xk , dk , ck ))
π>k (x + c) + ρ>k d ≥ V (DLP(x , d , c))

Thus (πk , ρk ) is a supergradient of V (DLP(x , d , c)) at (xk , dk , ck )

V (DLP(x , d , c)) ≤ V (DLP(xk , dk , ck ))
+π>k (x − xk ) + ρ>k (d − dk ) + π>k (c − ck )
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Outer approximation of V(DLP)

Let φ(x,d, c) be the optimal value of DLP(x,d, c). Then it is easy to
show (e.g. Cooper 2002) that

Vt (x) ≤ φ(x,E[D(t)],E[C(t)]).

Let xk , k = 1, . . . ,K be resource vectors, ck , k = 1, . . . ,K be resource
increments, dk , k = 1, . . . ,K be demand vectors, and (πk , ρk ) the
optimal solutions of DLP∗(xk ,dk , ck ). Then

φ(x,d, c) ≤ min{φ(xk ,dk , ck )+π>k (x− xk) + ρ>k (d− dk)+π>k (c− ck)}.

The RHS is a polyhedral outer approximation to φt (x,d, c), and therefore
to Vt (x) when E[D(t)] = d and E[C(t)] = c.
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Approximations to Bellman function

Approximations to R(x)− R(x − 1) from continuous V and DLP φ.
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SDDP

Computing continuous value function Vt (x).

SDDP (Pereira and Pinto, 1991): Outer approximation of Vt (x) as a
polyhedral function

V̂t (x) = min
k∈K (t)

{αk (t) + βk (t)
>x}

defined by Kelley cutting planes, i.e.

V̂t (x) =
{
max θ

s.t. θ ≤ αk (t) + βk (t)
>x , k ∈ K (t).

αk (t), βk (t) computed iteratively along sample path realizations of
random variables.

Convergence w.p.1 when samples drawn independently (P. and Guan,
2008).
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SDDP in Julia
[Dowson & Kapelevich, 2021]

https://odow.github.io/SDDP.jl/stable/
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Stochastic All Blacks
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Setting up the stage problems
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Training the model
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https://freighthub.nz
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The stage problem for trucking
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The stage problem for trucking
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Demo
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Questions

SDDP versus Lagrangian relaxation.

Rate of convergence of SDDP.

Scalability?

Is this of any use to Amazon?

Adoption by Freighthub.
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Literature

1 Improve bid-price approximation by using difference of value function
approximations (Bertsimas and Popescu, 2003)

2 Stochastic programming applied to network RM. (de Boer et al,
Romisch, Higle and Sen, DeMiguel and Mishra, Chen and Homem de
Mello)

3 SDDP (Periera and Pinto, 1991) applied in energy planning with
some success. (c.f. Powell, Topaloglu and co-authors in vehicle fleet
assignment).

4 Re-solving DLP models (Williamson 1992, Cooper, 2002, Talluri and
van Ryzin 1998, Maglaras and Meissner, 1986, Reiman and Wang,
2005, Adelman, 2006)
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