Long-term models

Andy Philpott

July 27, 2025

This tutorial in three parts

- Short-term models (hours/days)
 - social plan minimizing cost
 - maximizing profit given prices
- Multistage and medium-term models (weeks/months)
 - social plan minimizing cost
 - maximizing profit given prices
- - social plan minimizing cost
 - maximizing return on investment given prices

Summary

- 1 Long-term (investment) models
- 2 Multi-horizon planning
- 3 EMERALD: Multi-horizon model of New Zealand
 - Demonstration
 - Results
 - Research questions
- 4 Planning versus competitive equilibrium
- What's next?

Summary

- Long-term (investment) models
- 2 Multi-horizon planning
- 3 EMERALD: Multi-horizon model of New Zealand
 - Demonstration
 - Results
 - Research questions
- 4 Planning versus competitive equilibrium
- What's next?

Screening Curves

Load duration curve showing optimal capacities of conventional generation with annual fixed costs a_1 , a_2 , and marginal costs c_1 , c_2 . Here $h(x_1 + x_2) = \frac{a_2}{V - c_2}$, $h(x_1) = \frac{a_1 - a_2}{C - C}$.

With intermittent renewables

- Wind and solar are not dispatchable and disrupt the merit order.
- How to do screening?
- Subtract wind and solar from demand and create net load duration curve.
 - Suitable if wind/solar investment is exogenous . . .
 - ... but difficult to optimize short-term storage.
 - If planning wind/solar investment need to approximate this process for different capacity choices.
- Use representative days and solve two-stage stochastic program.
 - Represents intraday variation e.g. for battery investment.
 - Suffers from perfect foresight bias.

Wind adjusted load duration curve

[Hole et al, 2024]

- Load duration curve piecewise constant with decreasing load blocks.
- Increased wind investment decreases net load across all load blocks.
- Fix the set of hours in each block and fit a linear curve that defines how increased wind capacity decreases load in that block.

Wind investment using SDDP

[Hole et al, 2024]

Fig. 3. The policy graph structure for $INV - HTP - \infty$.

New Zealand Case study

[Hole et al, 2024]

Investment decisions plotted every 20 iterations of SDDP.

Summary

- 1 Long-term (investment) models
- 2 Multi-horizon planning
- 3 EMERALD: Multi-horizon model of New Zealand
 - Demonstration
 - Results
 - Research questions
- 4 Planning versus competitive equilibrium
- What's next?

Multi-horizon planning

- Capacity-expansion decisions over longer time scale (5 years or 10 years)
- Use a scenario tree to model uncertainty.

Multi-horizon scenario trees

- Operational uncertainty (brown) modeled with a finer time scale.
- Can model this using
 - a fine scenario tree;
 - a Markov Decision Process;
 - representative days/weeks/seasons.

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

- allows users to easily implement multi-horizon optimization models using the JuMP modelling language;
- can apply end-of-horizon risk-measures in objective function and/or the constraints; and
- outputs an interactive view of the results over the scenario tree, enabling decision makers to explore the optimal expansion plan.

Summary

- 1 Long-term (investment) models
- 2 Multi-horizon planning
- 3 EMERALD: Multi-horizon model of New Zealand
 - Demonstration
 - Results
 - Research questions
- 4 Planning versus competitive equilibrium
- What's next?

Example: New Zealand decarbonization model

Expansions and shutdowns

Optimize capacity expansion under uncertainty represented by a scenario tree.

Model is a risk-averse central-planning model minimizing discounted disbenefit Z summed from 2021-2050.

End-of-horizon risk is a convex combination of expected value and average value at risk, so $Risk(\lambda, \alpha)$ is

$$(1-\lambda)\mathbb{E}[Z] + \lambda AVaR_{1-\alpha}[Z]$$

31-node scenario tree.

Example: New Zealand decarbonization model

Defining the subproblems

Sets:

- seasons $t \in \mathcal{T}$:
- load blocks $b \in \mathcal{B}_t$, $t \in \mathcal{T}$:
- hydrological years $h \in \mathcal{H}$;
- technologies $k \in \mathcal{K}$.

Variables:

- $-x_k$ capacity to build for technology k;
- $-g_k^{bh}$ generation from technology k in load block b, with hydrological year h.

Parameters:

- $-d^b$ demand in load block b:
- $-u_k$ initial capacity of technology k;
- $-U_k$ maximum capacity increment of each new technology k;
- $-\theta_k^b$ is the capacity factor for technology k, in load block b.

Medium-term Operational Model

Subproblem objective function

Subproblem at node n minimizes the operational costs of the electricity system:

$$\min \quad \sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh},$$

where Δ_b is the number of hours corresponding to load block b;

 ρ_h is the probability of hydrological year h;

 c_k is the marginal cost of technology k;

 e_k gives the emissions factor of technology k;

 τ is the carbon tax.

Cost of investments over the tree:

$$\min \quad \sum_{n \in \mathcal{N}} \phi_n \sum_{k \in \mathcal{K}} C_k x_k,$$

 ϕ_n is the (discounted) probability of reaching node n; C_k is the capital cost (per unit) of technology k; $x_k \in [0,1]$ represents investment in technology k.

Medium-term operations

Subproblem constraints

Load balance:

$$\sum_{k\in\mathcal{K}}g_k^{bh}=d^b,\quad\forall b\in\mathcal{B},h\in\mathcal{H},$$

Generation capacity:

$$0 \leq g_k^{bh} \leq \theta_k^b(u_k + x_k U_k) \quad \forall b \in \mathcal{B}_t, t \in \mathcal{T}, h \in \mathcal{H}, k \in \mathcal{K},$$

Stored hydro generation:

$$\sum_{b \in \mathcal{B}_t} g_{\mathsf{hydro}}^{bh} imes \Delta_b = \mu_t^h \quad orall h \in \mathcal{H}, t \in \mathcal{T},$$

Expansions:

$$x_k \in [0,1], \quad \forall k \in \mathcal{K}, i \in \{1,\ldots,N\}.$$

EMERALD demonstration

EMERALD case study uses...

- Three regions (NI, HAY, SI).
- Four seasons with 10 load blocks each.
- 16 load growth scenarios.
- 13 historical years model seasonal hydrological inflows.
- Data based on two-stage model of NZ system.¹

¹Ferris & Philpott, 100% renewable electricity with storage (2019) http://www.epoc.org.nz.

- Annual total energy demand increases from
 - Electric vehicles;
 - Industrial load;
 - Consumer load;
 - Aluminium smelter (or replacement).
- NZ carbon prices in target years are assumed.
- Carbon prices affect fossil fuels and electricity prices.
- Electricity demand growth from PEVs.
- Exogeneous decrease in cost of solar panels.

- Annual total energy demand increases from
 - Electric vehicles;
 - Industrial load;
 - Consumer load;
 - Aluminium smelter (or replacement).
- NZ carbon prices in target years are assumed.
- Carbon prices affect fossil fuels and electricity prices.
- Electricity demand growth from PEVs.
- Exogeneous decrease in cost of solar panels.

- Annual total energy demand increases from
 - Electric vehicles;
 - Industrial load;
 - Consumer load;
 - Aluminium smelter (or replacement).
- NZ carbon prices in target years are assumed.
- Carbon prices affect fossil fuels and electricity prices.
- Electricity demand growth from PEVs.
- Exogeneous decrease in cost of solar panels.

- Annual total energy demand increases from
 - Electric vehicles;
 - Industrial load;
 - Consumer load;
 - Aluminium smelter (or replacement).
- NZ carbon prices in target years are assumed.
- Carbon prices affect fossil fuels and electricity prices.
- Electricity demand growth from PEVs.
- Exogeneous decrease in cost of solar panels.

- Annual total energy demand increases from
 - Electric vehicles;
 - Industrial load;
 - Consumer load;
 - Aluminium smelter (or replacement).
- NZ carbon prices in target years are assumed.
- Carbon prices affect fossil fuels and electricity prices.
- Electricity demand growth from PEVs.
- Exogeneous decrease in cost of solar panels.

Scenario tree for demand and carbon price

```
n,p,probability,evgrowth,phgrowth,loadgrowth,smelter,carbon
1,-,1,1,1,1,50
,1,0.5,1.389,1.261,1.16,1,50
12,1,0.5,1.389,1.35,1.052,1,50
111.11.0.25.5.5.1.44.1.28.1.200
112.11.0.25.5.5.1.317.1.03.1.200
121.12.0.25.5.5.1.542.1.161.1.200
122.12.0.25.5.5.1.411.0.934.1.200
1111,111,0.125,50,1.86,1.427,1,500
1112,111,0.125,50,1.623,1.546,1,500
1121,112,0.125,50,1.702,1.147,1,500
```

mytree, data = tree_with_data(myscenariotree.csv)

Scenario tree for demand and carbon price

JuDGE.visualize_tree(mytree, data)

```
mytree, data = tree_with_data(myscenariotree.csv)
 n,p,probability,evgrowth,phgrowth,loadgrowth,smelter,carbon
 1,-,1,1,1,1,50
 ,1,0.5,1.389,1.261,1.16,1,50
 12,1,0.5,1.389,1.35,1.052,1,50
 111.11.0.25.5.5.1.44.1.28.1.200
 112.11.0.25.5.5.1.317.1.03.1.200
 121.12.0.25.5.5.1.542.1.161.1.200
 122.12.0.25.5.5.1.411.0.934.1.200
 1111,111,0.125,50,1.86,1.427,1,500
 1112,111,0.125,50,1.623,1.546,1,500
 1121,112,0.125,50,1.702,1.147,1,500
 . . . .
```

Scenario tree

Creating the JuDGE model

Running EMERALD

Solving and producing output

```
JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)
solution = JuDGE.solution_to_dictionary(model)
(some code to set up custom_plots using plotly)
JuDGE.visualize_tree(mytree, solution,
custom=custom_plots)
```

Long-term (investment) models Multi-horizon planning occoo Multi-horizon model of New Zealand Planning versus competitive equilibrium What's next?

EMERALD results

What is missing from these planning models?

- Endogeneous learning;
- Optimal operational policies for renewables;
- Revenue stacking for some technologies, e.g. batteries;
- More sophisticated solution interpretation tools for large scale models;
- Relationship to generator investment behaviour.

Summary

- 1 Long-term (investment) models
- 2 Multi-horizon planning
- EMERALD: Multi-horizon model of New Zealand
 - Demonstration
 - Results
 - Research questions
- 4 Planning versus competitive equilibrium
- 5 What's next?

Dynamic investment equilibrium = EMERALD solution

[Ralph & Smeers (2015)], [Abada et al, (2017)], [De Maere d'Aertrycke et al (2017)], [Ferris & P. (2022).]

- Suppose each agent in EMERALD has their own nested coherent risk measure with single-stage risk sets (that can vary with node).
- Each agent invests to maximize risk-adjusted return at market prices, where they trade risk in each node in a complete market of Arrow-Debreu securities.
- Suppose planner optimizes welfare using a social risk measure that is nested using the intersection of agent risk sets at each node. (JuDGE uses an end-of-horizon risk measure.)
- Optimal risk-averse plan gives prices and investments that form a partial equilibrium.

Incomplete risk markets

[Abada et al, (2017)], [Gerard et al, (2018)], [Kok et al, (2018)]

- When markets for risk are incomplete risked equilibrium might not correspond to social plan.
- Can show risked equilibria exist either with no contracts or a complete market.
- There might exist multiple risked equilibria or none. [Gerard et al (2018)]
- If contracts have bounded payoffs (e.g. contracts for differences with price caps) then can prove existence [Kok et al (2018)].

Summary

- 1 Long-term (investment) models
- 2 Multi-horizon planning
- 3 EMERALD: Multi-horizon model of New Zealand
 - Demonstration
 - Results
 - Research questions
- 4 Planning versus competitive equilibrium
- What's next?

New Challenges

- Is (risked) Walrasian equilibrium the right model?
 - Subgame perfect Nash equilbrium arguably more realistic.
 - Dispatch is a repeated game, so perhaps we should study tacit collusion.
 - Should price-setting behaviour in markets be penalized by regulator?
 How to detect it.
- How to model constraints on deployment.
 - Raw material constraints;
 - Labour and expertise;
 - Connection queues.
- Prosumers and aggregation.
- System stability with random events.
- System reliability for climate change.

Stochastic programming, energy and A.I.

- Is A.I. a game-changer in energy optimization?
 - Machine learning can determine reserve requirements using offline optimization.
 - Machine learning can help train operational models to optimize subproblems in multihorizon settings.
 - Will A.I. create a new law of learning rate?
- How will regulators prevent LLMs from enabling collusive outcomes?
- Will demand for A.I. data centres overwhelm the electricity transition?

References

- Abada, I., Ehrenmann, A. and Smeers, Y., 2017. Modeling gas markets with endogenous long-term contracts. Operations Research, 65(4), pp.856-877.
- Abada, I., de Maere d'Aertrycke, G. and Smeers, Y., 2017. On the multiplicity of solutions in generation capacity investment models with incomplete markets: a risk-averse stochastic equilibrium approach. Mathematical Programming, 165(1), pp.5-69.
- De Maere d'Aertrycke, G., Ehrenmann, A. and Smeers, Y., 2017. Investment with incomplete markets for risk: The need for long-term contracts. Energy Policy, 105, pp.571-583.
- Ferris, M. and Philpott, A., 2022. Dynamic risked equilibrium. Operations Research, 70(3), pp.1933-1952.
- Gérard H, Leclère V, Philpott A. On risk averse competitive equilibrium. Operations Research Letters. 2018 Jan 1;46(1):19-26.

References

- Kaut, M., Midthun, K.T., Werner, A.S., Tomasgard, A., Hellemo, L. and Fodstad, M., 2014. Multi-horizon stochastic programming. Computational Management Science, 11(1), pp.179-193.
- Kok, C., Philpott, A. and Zakeri, G., 2018. Value of transmission capacity in electricity markets with risk averse agents. Technical Report www. epoc. org. nz.
- Ralph, D. and Smeers, Y., 2015. Risk trading and endogenous probabilities in investment equilibria. SIAM Journal on Optimization, 25(4), pp.2589-2611.

The End