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This tutorial in three parts

@ Short-term models (hours/days)
e social plan minimizing cost
e maximizing profit given prices
@ Multistage and medium-term models (weeks/months)
e social plan minimizing cost
e maximizing profit given prices
© Long-term models (years/decades)

e social plan minimizing cost
@ maximizing return on investment given prices
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Screening Curves
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With intermittent renewables

e Wind and solar are not dispatchable and disrupt the merit order.

e How to do screening?
e Subtract wind and solar from demand and create net load duration curve.
o Suitable if wind/solar investment is exogenous . ..
e ...but difficult to optimize short-term storage.
o If planning wind/solar investment need to approximate this process for
different capacity choices.
e Use representative days and solve two-stage stochastic program.
o Represents intraday variation e.g. for battery investment.
o Suffers from perfect foresight bias.
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Wind adjusted load duration curve
[Hole et al, 2024]

e Load duration curve piecewise constant with decreasing load blocks.
@ Increased wind investment decreases net load across all load blocks.

o Fix the set of hours in each block and fit a linear curve that defines how
increased wind capacity decreases load in that block.
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Wind investment using SDDP

[Hole et al, 2024]
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New Zealand Case study
[Hole et al, 2024]
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Multi-horizon planning

low demand

high demand Choose capital investments

to make in node n, and minimize
operating costs for ten years

2021 2025 2030 2040 2050

e Capacity-expansion decisions over longer time scale (5 years or 10 years)
e Use a scenario tree to model uncertainty.
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Multi-horizon scenario trees

low demand

Operating model is a
stochastic program at

high demand a finer time scale.

high

2021 2025 2030 2040 2050

e Operational uncertainty (brown) modeled with a finer time scale.

e Can model this using
e a fine scenario tree;
e a Markov Decision Process;
e representative days/weeks/seasons.
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JuDGEjl

Problem Class / Decomposition

https://github.com/EPOC-NZ/JuDGE. j1

JuDGE stands for Julia Decomposition for Generalized Expansion.).

— allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

— can apply end-of-horizon risk-measures in objective function and/or the
constraints; and

— outputs an interactive view of the results over the scenario tree, enabling decision
makers to explore the optimal expansion plan.


https://github.com/EPOC-NZ/JuDGE.jl
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Example: New Zealand decarbonization model

Expansions and shutdowns

Optimize capacity expansion under un-

certainty represented by a scenario tree. * ®

12 ‘

. v

Model is a risk-averse central-planning " o .

model minimizing discounted disbenefit * . .

Z summed from 2021-2050. o :

End-of-horizon risk is a convex combina- e :

tion of expected value and average value ° 2
at risk, so Risk(A, a) is “ *

(1—A)E[Z] + AAVaR;_4[Z] e ®

31-node scenario tree.
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Example: New Zealand decarbonization model
Defining the subproblems

Sets:

seasons t € T ;
— load blocks b€ By, t € T;
hydrological years h € H;

technologies k € K.
Variables:
— X, capacity to build for technology k;
- gfh generation from technology k in load block b, with hydrological year h.

Parameters:
- db demand in load block b;
- Uy initial capacity of technology k;

- Uk maximum capacity increment of each new technology k;
- 9,‘3 is the capacity factor for technology k, in load block b.



EMERALD: Multi-horizon model of New Zealand
000e0

Medium-term Operational Model

Subproblem objective function

Subproblem at node n minimizes the operational costs of the electricity system:

min Y Y A Y pn Y (ck+Ter)ge”,

teT beB: heH kel

where Ay is the number of hours corresponding to load block b;
Ph is the probability of hydrological year h;
Ck is the marginal cost of technology k;
ex gives the emissions factor of technology k;
T is the carbon tax.

Cost of investments over the tree:

min Z ¢n Z Ci Xy,

neN kel

¢n is the (discounted) probability of reaching node n;
Cy is the capital cost (per unit) of technology k;
xk € [0, 1] represents investment in technology k.
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Medium-term operations

Subproblem constraints

Load balance:
Y g"=d’ VbeB heH,
kelC

Generation capacity:

0<gth <0b(up+xUs) VbeBiteT heH, keKk,

Stored hydro generation:

Y g XAp=pf VYheH, teT,
beB:

Expansions:
xx €10,1], VkeK,ie{l,...,N}.
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EMERALD demonstration

EMERALD case study uses...
— Three regions (NI, HAY, SI).

— Four seasons with 10 load blocks each.
— 16 load growth scenarios.
— 13 historical years model seasonal hydrological inflows.

— Data based on two-stage model of NZ system.?

IFerris & Philpott, 100% renewable electricity with storage (2019) http: //www.epoc.org.nz.


http://www.epoc.org.nz
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EMERALD input data

Random demand and carbon prices

e Annual total energy demand increases from

Electric vehicles;

e Industrial load;

o Consumer load;

e Aluminium smelter (or replacement).

o NZ carbon prices in target years are assumed.

Carbon prices affect fossil fuels and electricity prices.

Electricity demand growth from PEVs.

Exogeneous decrease in cost of solar panels.
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EMERALD input data

Scenario tree for demand and carbon price

mytree, data = tree_with_data(myscenariotree.csv)

n,p,probability,evgrowth,phgrowth,loadgrowth,smelter,carbon
1,-,1,1,1,1,1,50
,1,0.5,1.389,1.261,1.16,1,50
12,1,0.5,1.389,1.35,1.052,1,50
111,11,0.25,5.5,1.44,1.28,1,200
112,11,0.25,5.5,1.317,1.03,1,200
121,12,0.25,5.5,1.542,1.161,1,200
122,12,0.25,5.5,1.411,0.934,1,200
1111,111,0.125,50,1.86,1.427,1,500
1112,111,0.125,50,1.623,1.546,1,500
1121,112,0.125,50,1.702,1.147,1,500
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EMERALD input data

Scenario tree for demand and carbon price

mytree, data = tree_with_data(myscenariotree.csv)
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JuDGE.visualize tree(mytree, data)
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Scenario tree
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Creating the JuDGE model

model = JuDGEModel (mytree,
ConditionallyUniformProbabilities,
sub_problems,
JuDGE_MP_Solver,
discount factor=discfactor)
risk=Risk(0.95, (1/16)
)
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Running EMERALD

Solving and producing output

JuDGE . solve(model ,termination=Termination(reltol=0.001))
resolve_subproblems (model)

solution = JuDGE.solution to_dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,
custom=custom plots)
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EMERALD results
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What is missing from these planning models?

@ Endogeneous learning;
@ Optimal operational policies for renewables;
@ Revenue stacking for some technologies, e.g. batteries;

@ More sophisticated solution interpretation tools for large scale
models;

@ Relationship to generator investment behaviour.



Planning versus competitive equilibrium
[ ele}

Summary

@ Planning versus competitive equilibrium



Planning versus competitive equilibrium
oeo

Dynamic investment equilibrium = EMERALD solution
[Ralph & Smeers (2015)], [Abada et al, (2017)], [De Maere d'Aertrycke et al (2017)], [Ferris & P. (2022).]

o Suppose each agent in EMERALD has their own nested
coherent risk measure with single-stage risk sets (that can vary
with node).

o Each agent invests to maximize risk-adjusted return at market
prices, where they trade risk in each node in a complete market
of Arrow-Debreu securities.

o Suppose planner optimizes welfare using a social risk measure
that is nested using the intersection of agent risk sets at each
node. (JuDGE uses an end-of-horizon risk measure.)

o Optimal risk-averse plan gives prices and investments that form
a partial equilibrium.
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Incomplete risk markets
[Abada et al, (2017)], [Gerard et al, (2018)], [Kok et al, (2018)]

o When markets for risk are incomplete risked equilibrium might
not correspond to social plan.

e Can show risked equilibria exist either with no contracts or a
complete market.

o There might exist multiple risked equilibria or none.[Gerard et
al (2018)]

o If contracts have bounded payoffs (e.g. contracts for differences
with price caps) then can prove existence [Kok et al (2018)].
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New Challenges

e Is (risked) Walrasian equilibrium the right model?

o Subgame perfect Nash equilbrium arguably more realistic.

o Dispatch is a repeated game, so perhaps we should study tacit collusion.

o Should price-setting behaviour in markets be penalized by regulator?
How to detect it.

e How to model constraints on deployment.

o Raw material constraints;
o Labour and expertise;
o Connection queues.

e Prosumers and aggregation.
e System stability with random events.
e System reliability for climate change.
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Stochastic programming, energy and A.l.

o Is A.l. a game-changer in energy optimization?
o Machine learning can determine reserve requirements using
offline optimization.
o Machine learning can help train operational models to
optimize subproblems in multihorizon settings.
o Will A.l. create a new law of learning rate?

o How will regulators prevent LLMs from enabling collusive
outcomes?

o Will demand for A.l. data centres overwhelm the electricity
transition?
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The End
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