
Multistage investment planning

for

renewable electricity systems

Andy Philpott
Joint work with Anthony Downward and Regan Baucke

Electric Power Optimization Centre
University of Auckland

www.epoc.org.nz

International Conference on Stochastic Programming, Davis, July 27, 2023.

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

Multi-horizon stochastic programming and capacity planning

The JuDGE package

The EMERALD Model

New Zealand case study

Results

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

Multi-horizon stochastic programming and capacity planning

The JuDGE package

The EMERALD Model

New Zealand case study

Results

Transitioning to renewable electricity

Many models have been developed to plan for future zero-carbon
energy systems.

▶ Deterministic and stochastic planning models;

▶ Agent simulation models;

▶ Competitive equilibrium ?

Need to model risk: generation capacity choices are made by
risk-averse commercial investors responding to incentives (carbon
prices) and/or regulation.

Optimal risk-averse plan matches partial equilibrium when risk
measures are coherent and risk-trading instruments available.2

2Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022

Transitioning to renewable electricity

Many models have been developed to plan for future zero-carbon
energy systems.

▶ Deterministic and stochastic planning models;

▶ Agent simulation models;

▶ Competitive equilibrium ?

Need to model risk: generation capacity choices are made by
risk-averse commercial investors responding to incentives (carbon
prices) and/or regulation.

Optimal risk-averse plan matches partial equilibrium when risk
measures are coherent and risk-trading instruments available.2

2Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022

Transitioning to renewable electricity

Many models have been developed to plan for future zero-carbon
energy systems.

▶ Deterministic and stochastic planning models;

▶ Agent simulation models;

▶ Competitive equilibrium ?

Need to model risk: generation capacity choices are made by
risk-averse commercial investors responding to incentives (carbon
prices) and/or regulation.

Optimal risk-averse plan matches partial equilibrium when risk
measures are coherent and risk-trading instruments available.2

2Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

Multi-horizon stochastic programming and capacity planning

The JuDGE package

The EMERALD Model

New Zealand case study

Results

Multi-horizon planning

2021 2025 2030 2040 2050

high demand

low demand

Choose capital investments
to make in node n, and minimize
operating costs for ten years

low

low

high

high

Capacity-expansion decisions over longer time scale (5 years or 10
years) result in lower operational costs, or higher revenue in the
future.

Multi-horizon scenario trees [Kaut et al, 2014]

2021 2025 2030 2040 2050

high demand

low demand

low

low

high

high

Operating model is a
stochastic program at
a finer time scale.

Operational decisions with short-term uncertainty optimized by a
stochastic program.

General formulation

– N is the set of nodes in the scenario
tree;

– ϕn the probability of the state of the
world n occurring;

– Pn the set of nodes on the path to
(and including) node n;

– m is the number of expansion
variables;

– zn ∈ Zm
+ are the variables for the

expansions made at node n;

– yn is the variable vector for
stage-problem n;

– Yn is the stage-problem feasibility set.

Extensive Form:

min
y ,z

∑
n∈N

ϕn(c
⊤
n zn + q⊤n yn)

s.t. Anyn ≤ b+D ∑
h∈Pn

zh, ∀n ∈ N ,

yn ∈ Yn, ∀n ∈ N ,

zn ∈ Zm
+ , ∀n ∈ N .

General formulation

– N is the set of nodes in the scenario
tree;

– ϕn the probability of the state of the
world n occurring;

– Pn the set of nodes on the path to
(and including) node n;

– m is the number of expansion
variables;

– zn ∈ Zm
+ are the variables for the

expansions made at node n;

– yn is the variable vector for
stage-problem n;

– Yn is the stage-problem feasibility set.

Extensive Form:

min
y ,z

∑
n∈N

ϕn(c
⊤
n zn + q⊤n yn)

s.t. Anyn ≤ b+D ∑
h∈Pn

zh, ∀n ∈ N ,

yn ∈ Yn, ∀n ∈ N ,

zn ∈ Zm
+ , ∀n ∈ N .

General formulation

– N is the set of nodes in the scenario
tree;

– ϕn the probability of the state of the
world n occurring;

– Pn the set of nodes on the path to
(and including) node n;

– m is the number of expansion
variables;

– zn ∈ Zm
+ are the variables for the

expansions made at node n;

– yn is the variable vector for
stage-problem n;

– Yn is the stage-problem feasibility set.

Extensive Form:

min
y ,z

∑
n∈N

ϕn(c
⊤
n zn + q⊤n yn)

s.t. Anyn ≤ b+D ∑
h∈Pn

zh, ∀n ∈ N ,

yn ∈ Yn, ∀n ∈ N ,

zn ∈ Zm
+ , ∀n ∈ N .

General formulation

– N is the set of nodes in the scenario
tree;

– ϕn the probability of the state of the
world n occurring;

– Pn the set of nodes on the path to
(and including) node n;

– m is the number of expansion
variables;

– zn ∈ Zm
+ are the variables for the

expansions made at node n;

– yn is the variable vector for
stage-problem n;

– Yn is the stage-problem feasibility set.

Extensive Form:

min
y ,z

∑
n∈N

ϕn(c
⊤
n zn + q⊤n yn)

s.t. Anyn ≤ b+D ∑
h∈Pn

zh, ∀n ∈ N ,

yn ∈ Yn, ∀n ∈ N ,

zn ∈ Zm
+ , ∀n ∈ N .

General formulation

– N is the set of nodes in the scenario
tree;

– ϕn the probability of the state of the
world n occurring;

– Pn the set of nodes on the path to
(and including) node n;

– m is the number of expansion
variables;

– zn ∈ Zm
+ are the variables for the

expansions made at node n;

– yn is the variable vector for
stage-problem n;

– Yn is the stage-problem feasibility set.

Extensive Form:

min
y ,z

∑
n∈N

ϕn(c
⊤
n zn + q⊤n yn)

s.t. Anyn ≤ b+D ∑
h∈Pn

zh, ∀n ∈ N ,

yn ∈ Yn, ∀n ∈ N ,

zn ∈ Zm
+ , ∀n ∈ N .

General formulation

– N is the set of nodes in the scenario
tree;

– ϕn the probability of the state of the
world n occurring;

– Pn the set of nodes on the path to
(and including) node n;

– m is the number of expansion
variables;

– zn ∈ Zm
+ are the variables for the

expansions made at node n;

– yn is the variable vector for
stage-problem n;

– Yn is the stage-problem feasibility set.

Extensive Form:

min
y ,z

∑
n∈N

ϕn(c
⊤
n zn + q⊤n yn)

s.t. Anyn ≤ b+D ∑
h∈Pn

zh, ∀n ∈ N ,

yn ∈ Yn, ∀n ∈ N ,

zn ∈ Zm
+ , ∀n ∈ N .

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

– allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

– can apply end-of-horizon risk-measures in objective function and/or the
constraints; and

– outputs an interactive view of the results over the scenario tree, enabling decision
makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

– allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

– can apply end-of-horizon risk-measures in objective function and/or the
constraints; and

– outputs an interactive view of the results over the scenario tree, enabling decision
makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

– allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

– can apply end-of-horizon risk-measures in objective function and/or the
constraints; and

– outputs an interactive view of the results over the scenario tree, enabling decision
makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.3

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

3Singh, P. & Wood, Operations Research, 2009.

JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.3

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

3Singh, P. & Wood, Operations Research, 2009.

JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.3

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

3Singh, P. & Wood, Operations Research, 2009.

JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.3

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

3Singh, P. & Wood, Operations Research, 2009.

JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.3

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

3Singh, P. & Wood, Operations Research, 2009.

JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.3

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

3Singh, P. & Wood, Operations Research, 2009.

JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.3

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

3Singh, P. & Wood, Operations Research, 2009.

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

Multi-horizon stochastic programming and capacity planning

The JuDGE package

The EMERALD Model

New Zealand case study

Results

EMERALD: New Zealand case study demo

The EMERALD model is designed to study effects of carbon-prices
and explicit restrictions on non-renewables.

Case study uses...

– Three regions.

– Four seasons with 10 load blocks each.

– 16 load growth scenarios.

– 13 historical years model seasonal hydrological inflows.

– Data based on two-stage model of NZ system.4

– Assume risk neutrality for simplicity.

4Ferris & Philpott, 100% renewable electricity with storage (2019) http://www.epoc.org.nz.

http://www.epoc.org.nz

New Zealand case study

EMERALD input data
Scenario tree for demand

mytree, data = tree with data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon

1,-,0.1,8.525,27.727,5.475,50

11,1,0.1389,10.750025,32.16332,5.475,50

12,1,0.1389,11.50875,29.168804,5.475,50

111,11,0.55,12.276,35.49056,5.475,50

112,11,0.55,11.227425,28.55881,5.475,50

121,12,0.55,13.14555,32.191047,5.475,50

122,12,0.55,12.028775,25.897018,5.475,50

1111,111,5,15.8565,39.566429,5.475,50

1121,112,5,14.50955,31.802869,5.475,50

....

JuDGE.visualize tree(mytree, data)

EMERALD input data
Scenario tree for demand

mytree, data = tree with data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon

1,-,0.1,8.525,27.727,5.475,50

11,1,0.1389,10.750025,32.16332,5.475,50

12,1,0.1389,11.50875,29.168804,5.475,50

111,11,0.55,12.276,35.49056,5.475,50

112,11,0.55,11.227425,28.55881,5.475,50

121,12,0.55,13.14555,32.191047,5.475,50

122,12,0.55,12.028775,25.897018,5.475,50

1111,111,5,15.8565,39.566429,5.475,50

1121,112,5,14.50955,31.802869,5.475,50

....

JuDGE.visualize tree(mytree, data)

EMERALD input data
Scenario tree for demand

mytree, data = tree with data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon

1,-,0.1,8.525,27.727,5.475,50

11,1,0.1389,10.750025,32.16332,5.475,50

12,1,0.1389,11.50875,29.168804,5.475,50

111,11,0.55,12.276,35.49056,5.475,50

112,11,0.55,11.227425,28.55881,5.475,50

121,12,0.55,13.14555,32.191047,5.475,50

122,12,0.55,12.028775,25.897018,5.475,50

1111,111,5,15.8565,39.566429,5.475,50

1121,112,5,14.50955,31.802869,5.475,50

....

JuDGE.visualize tree(mytree, data)

EMERALD input data
Setting the solvers

env = Gurobi.Env()

JuDGE SP Solver = optimizer with attributes(() ->

Gurobi.Optimizer(env), "OutputFlag" => 0, "MIPGap" =>

0.0)

JuDGE MP Solver = optimizer with attributes(() ->

Gurobi.Optimizer(env), "OutputFlag" => 0, "Method" =>

2, "Crossover" => 0, "MIPGap" => 0.0)

EMERALD input data
Setting the solvers

env = Gurobi.Env()

JuDGE SP Solver = optimizer with attributes(() ->

Gurobi.Optimizer(env), "OutputFlag" => 0, "MIPGap" =>

0.0)

JuDGE MP Solver = optimizer with attributes(() ->

Gurobi.Optimizer(env), "OutputFlag" => 0, "Method" =>

2, "Crossover" => 0, "MIPGap" => 0.0)

EMERALD input data
Setting the solvers

env = Gurobi.Env()

JuDGE SP Solver = optimizer with attributes(() ->

Gurobi.Optimizer(env), "OutputFlag" => 0, "MIPGap" =>

0.0)

JuDGE MP Solver = optimizer with attributes(() ->

Gurobi.Optimizer(env), "OutputFlag" => 0, "Method" =>

2, "Crossover" => 0, "MIPGap" => 0.0)

EMERALD input data
Defining subproblems

function sub problems(n::AbstractTree)

sp = JuMP.Model(JuDGE SP Solver)

@expansion(sp, 0 <= investment[k in 1..invest keys] <=

numUnits[k], lag = 1)#, Int)

@capitalcosts(sp, lifetime[n] *

sum(sum(l.generators[g].capitalcosts *

l.generators[g].investment

* investment[(i, g)] / l.generators[g].numUnits

for g in keys(l.generators)) for (i, l) in

data[n].locations))

EMERALD input data
Defining subproblems

function sub problems(n::AbstractTree)

sp = JuMP.Model(JuDGE SP Solver)

@expansion(sp, 0 <= investment[k in 1..invest keys] <=

numUnits[k], lag = 1)#, Int)

@capitalcosts(sp, lifetime[n] *

sum(sum(l.generators[g].capitalcosts *

l.generators[g].investment

* investment[(i, g)] / l.generators[g].numUnits

for g in keys(l.generators)) for (i, l) in

data[n].locations))

EMERALD input data
Defining subproblems

@variable(sp, output[gen keys] >= 0)

@variable(sp, CO2emission[gen keys] >= 0)

@variable(sp, 0 <= flow[(l, k, j, b, h) in flow keys]

<= data[n].network[(l, k)])

@variable(sp, target[(l, t) in target keys] >= 0)

@variable(sp, storage[(l, t, h) in storage keys] >= 0)

.......

EMERALD input data
Defining subproblems

@objective(sp, Min, sum(10000 * investment[(l, g)]

for (l, g) in invest keys) +

sum(data[n].locations[l].generators[g].SRMC *

output[(l, t, b, h, g)]

* ... for (l, t, b, h, g) in gen keys)))

@constraint(sp,load balance[(l, t, b, h) in

shed keys],

data[n].locations[l].loadblocks[b].load *

data[n].seasons[t].demand - shedding[(l, t, b, h)] ==

sum(output[(l, t, b, h, g)] for g in

keys(data[n].locations[l].generators)) ...

EMERALD input data
Defining subproblems

@objective(sp, Min, sum(10000 * investment[(l, g)]

for (l, g) in invest keys) +

sum(data[n].locations[l].generators[g].SRMC *

output[(l, t, b, h, g)]

* ... for (l, t, b, h, g) in gen keys)))

@constraint(sp,load balance[(l, t, b, h) in

shed keys],

data[n].locations[l].loadblocks[b].load *

data[n].seasons[t].demand - shedding[(l, t, b, h)] ==

sum(output[(l, t, b, h, g)] for g in

keys(data[n].locations[l].generators)) ...

EMERALD input data
Creating the JuDGE model

model = JuDGEModel(mytree,

ConditionallyUniformProbabilities,

sub problems,

JuDGE MP Solver,

discount factor=0.92)

EMERALD input data
Creating the JuDGE model

model = JuDGEModel(mytree,

ConditionallyUniformProbabilities,

sub problems,

JuDGE MP Solver,

discount factor=0.92)

EMERALD input data
Creating the JuDGE model

model = JuDGEModel(mytree,

ConditionallyUniformProbabilities,

sub problems,

JuDGE MP Solver,

discount factor=0.92)

EMERALD input data
Creating the JuDGE model

model = JuDGEModel(mytree,

ConditionallyUniformProbabilities,

sub problems,

JuDGE MP Solver,

discount factor=0.92)

EMERALD input data
Creating the JuDGE model

model = JuDGEModel(mytree,

ConditionallyUniformProbabilities,

sub problems,

JuDGE MP Solver,

discount factor=0.92)

EMERALD results
Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))

resolve subproblems(model)

solution = JuDGE.solution to dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,

custom=custom plots)

EMERALD results
Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))

resolve subproblems(model)

solution = JuDGE.solution to dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,

custom=custom plots)

EMERALD results
Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))

resolve subproblems(model)

solution = JuDGE.solution to dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,

custom=custom plots)

EMERALD results
Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))

resolve subproblems(model)

solution = JuDGE.solution to dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,

custom=custom plots)

The End

JuDGE.jl Julia Library downloadable from

https://github.com/EPOC-NZ/JuDGE.jl

My contact: a.philpott@auckland.ac.nz

Technical questions to: a.downward@auckland.ac.nz

https://github.com/EPOC-NZ/JuDGE.jl
a.philpott@auckland.ac.nz
a.downward@auckland.ac.nz

	Transitioning to renewable electricity
	Multi-horizon modelling framework
	Multi-horizon stochastic programming and capacity planning
	The JuDGE package

	The EMERALD Model
	New Zealand case study
	Results

