Multistage investment planning for renewable electricity systems

Andy Philpott

Joint work with Anthony Downward and Regan Baucke

Electric Power Optimization Centre University of Auckland www.epoc.org.nz

International Conference on Stochastic Programming, Davis, July 27, 2023.

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

Multi-horizon stochastic programming and capacity planning The JuDGE package

The EMERALD Model

New Zealand case study

Results

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

Multi-horizon stochastic programming and capacity planning The JuDGE package

The EMERALD Model

New Zealand case study

Results

Transitioning to renewable electricity

Many models have been developed to plan for future zero-carbon energy systems.

- Deterministic and stochastic planning models;
- Agent simulation models;

²Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022

Transitioning to renewable electricity

Many models have been developed to plan for future zero-carbon energy systems.

- Deterministic and stochastic planning models;
- Agent simulation models;
- Competitive equilibrium ?

²Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022

Transitioning to renewable electricity

Many models have been developed to plan for future zero-carbon energy systems.

- Deterministic and stochastic planning models;
- Agent simulation models;
- Competitive equilibrium ?

Need to model risk: generation capacity choices are made by risk-averse commercial investors responding to incentives (carbon prices) and/or regulation.

Optimal risk-averse plan matches partial equilibrium when risk measures are coherent and risk-trading instruments available.²

²Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

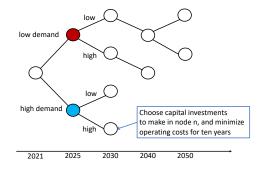
Multi-horizon stochastic programming and capacity planning The JuDGE package

The EMERALD Model

New Zealand case study

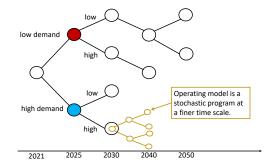
Results

Multi-horizon planning



Capacity-expansion decisions over longer time scale (5 years or 10 years) result in lower operational costs, or higher revenue in the future.

Multi-horizon scenario trees [Kaut et al, 2014]



Operational decisions with short-term uncertainty optimized by a stochastic program.

- ${\cal N}$ is the set of nodes in the scenario tree;
- $-\phi_n$ the probability of the state of the world *n* occurring;
- \mathcal{P}_n the set of nodes on the path to (and including) node *n*;
- *m* is the number of expansion variables;
- $-z_n \in \mathcal{Z}^m_+$ are the variables for the expansions made at node n;
- y_n is the variable vector for stage-problem n;
- \mathcal{Y}_n is the stage-problem feasibility set.

$$\min_{y,z} \quad \sum_{n \in \mathcal{N}} \phi_n(c_n^\top z_n + q_n^\top y_n) \\ \text{s.t.} \quad A_n y_n \le b + D \sum_{h \in \mathcal{P}_n} z_h, \ \forall n \in \mathcal{N}, \\ y_n \in \mathcal{Y}_n, \qquad \forall n \in \mathcal{N}, \\ z_n \in \mathcal{Z}_+^m, \qquad \forall n \in \mathcal{N}.$$

- $\ \mathcal{N}$ is the set of nodes in the scenario tree;
- $-\phi_n$ the probability of the state of the world *n* occurring;
- \mathcal{P}_n the set of nodes on the path to (and including) node *n*;
- *m* is the number of expansion variables;
- $-z_n \in \mathcal{Z}^m_+$ are the variables for the expansions made at node n;
- y_n is the variable vector for stage-problem n;
- \mathcal{Y}_n is the stage-problem feasibility set.

$$\min_{y,z} \quad \sum_{n \in \mathcal{N}} \phi_n(c_n^\top z_n + q_n^\top y_n) \\ \text{s.t.} \quad A_n y_n \leq b + D \sum_{h \in \mathcal{P}_n} z_h, \ \forall n \in \mathcal{N}, \\ y_n \in \mathcal{Y}_n, \qquad \forall n \in \mathcal{N}, \\ z_n \in \mathcal{Z}_+^m, \qquad \forall n \in \mathcal{N}.$$

- $\ \mathcal{N}$ is the set of nodes in the scenario tree;
- $-\phi_n$ the probability of the state of the world *n* occurring;
- \mathcal{P}_n the set of nodes on the path to (and including) node *n*;
- *m* is the number of expansion variables;
- $-z_n \in \mathcal{Z}^m_+$ are the variables for the expansions made at node n;
- y_n is the variable vector for stage-problem n;
- \mathcal{Y}_n is the stage-problem feasibility set.

$$\min_{y,z} \quad \sum_{n \in \mathcal{N}} \phi_n(c_n^\top z_n + q_n^\top y_n) \\ \text{s.t.} \quad A_n y_n \le b + D \sum_{h \in \mathcal{P}_n} z_h, \ \forall n \in \mathcal{N}, \\ y_n \in \mathcal{Y}_n, \qquad \forall n \in \mathcal{N}, \\ z_n \in \mathcal{Z}_+^m, \qquad \forall n \in \mathcal{N}.$$

- $\ \mathcal{N}$ is the set of nodes in the scenario tree;
- $-\phi_n$ the probability of the state of the world *n* occurring;
- \mathcal{P}_n the set of nodes on the path to (and including) node *n*;
- *m* is the number of expansion variables;
- $z_n \in \mathbb{Z}_+^m$ are the variables for the expansions made at node n;
- y_n is the variable vector for stage-problem n;
- \mathcal{Y}_n is the stage-problem feasibility set.

$$\min_{y,z} \quad \sum_{n \in \mathcal{N}} \phi_n(c_n^\top z_n + q_n^\top y_n) \\ \text{s.t.} \quad A_n y_n \le b + D \sum_{h \in \mathcal{P}_n} z_h, \ \forall n \in \mathcal{N}, \\ y_n \in \mathcal{Y}_n, \qquad \forall n \in \mathcal{N}, \\ z_n \in \mathcal{Z}_+^m, \qquad \forall n \in \mathcal{N}.$$

- $\ \mathcal{N}$ is the set of nodes in the scenario tree;
- $-\phi_n$ the probability of the state of the world *n* occurring;
- \mathcal{P}_n the set of nodes on the path to (and including) node *n*;
- *m* is the number of expansion variables;
- $-z_n \in \mathcal{Z}^m_+$ are the variables for the expansions made at node n;
- y_n is the variable vector for stage-problem n;
- \mathcal{Y}_n is the stage-problem feasibility set.

$$\min_{\boldsymbol{y},\boldsymbol{z}} \quad \sum_{n \in \mathcal{N}} \phi_n(\boldsymbol{c}_n^\top \boldsymbol{z}_n + \boldsymbol{q}_n^\top \boldsymbol{y}_n) \\ \text{s.t.} \quad \boldsymbol{A}_n \boldsymbol{y}_n \leq \boldsymbol{b} + \boldsymbol{D} \sum_{\boldsymbol{h} \in \mathcal{P}_n} \boldsymbol{z}_{\boldsymbol{h}}, \; \forall \boldsymbol{n} \in \mathcal{N}, \\ \boldsymbol{y}_n \in \mathcal{Y}_n, \qquad \forall \boldsymbol{n} \in \mathcal{N}, \\ \boldsymbol{z}_n \in \mathcal{Z}_+^m, \qquad \forall \boldsymbol{n} \in \mathcal{N}.$$

- $\ \mathcal{N}$ is the set of nodes in the scenario tree;
- $-\phi_n$ the probability of the state of the world *n* occurring;
- \mathcal{P}_n the set of nodes on the path to (and including) node *n*;
- *m* is the number of expansion variables;
- $-z_n \in \mathcal{Z}^m_+$ are the variables for the expansions made at node n;
- y_n is the variable vector for stage-problem n;
- \mathcal{Y}_n is the stage-problem feasibility set.

Extensive Form:

$$\min_{y,z} \quad \sum_{n \in \mathcal{N}} \phi_n(c_n^\top z_n + q_n^\top y_n) \\ \text{s.t.} \quad A_n y_n \le b + D \sum_{h \in \mathcal{P}_n} z_h, \ \forall n \in \mathcal{N}, \\ y_n \in \mathcal{Y}_n, \qquad \forall n \in \mathcal{N}, \\ z_n \in \mathcal{Z}_+^m, \qquad \forall n \in \mathcal{N}.$$

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

- allows users to easily implement multi-horizon optimization models using the JuMP modelling language;
- can apply end-of-horizon risk-measures in objective function and/or the constraints; and
- outputs an interactive view of the results over the scenario tree, enabling decision makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

- allows users to easily implement multi-horizon optimization models using the JuMP modelling language;
- can apply end-of-horizon risk-measures in objective function and/or the constraints; and
- outputs an interactive view of the results over the scenario tree, enabling decision makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

- allows users to easily implement multi-horizon optimization models using the JuMP modelling language;
- can apply end-of-horizon risk-measures in objective function and/or the constraints; and
- outputs an interactive view of the results over the scenario tree, enabling decision makers to explore the optimal expansion plan.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{\rm 3}$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

³Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{\rm 3}$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

³Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{\rm 3}$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

³Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{\rm 3}$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

³Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{\rm 3}$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

³Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{\rm 3}$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

³Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{\rm 3}$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

³Singh, P. & Wood, Operations Research, 2009.

Outline

Transitioning to renewable electricity

Multi-horizon modelling framework

Multi-horizon stochastic programming and capacity planning The JuDGE package

The EMERALD Model

New Zealand case study

Results

EMERALD: New Zealand case study demo

The EMERALD model is designed to study effects of carbon-prices and explicit restrictions on non-renewables.

Case study uses...

- Three regions.
- Four seasons with 10 load blocks each.
- 16 load growth scenarios.
- 13 historical years model seasonal hydrological inflows.
- Data based on two-stage model of NZ system.⁴
- Assume risk neutrality for simplicity.

⁴Ferris & Philpott, 100% renewable electricity with storage (2019) http://www.epoc.org.nz.

New Zealand case study

Vector NZ

Scenario tree for demand

mytree, data = tree_with_data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon 1, -, 0.1, 8.525, 27.727, 5.475, 5011,1,0.1389,10.750025,32.16332,5.475,50 12,1,0.1389,11.50875,29.168804,5.475,50 111,11,0.55,12.276,35.49056,5.475,50 112,11,0.55,11.227425,28.55881,5.475,50 121, 12, 0.55, 13.14555, 32.191047, 5.475, 50 122, 12, 0.55, 12.028775, 25.897018, 5.475, 50 1111,111,5,15.8565,39.566429,5.475,50 1121,112,5,14.50955,31.802869,5.475,50

Scenario tree for demand

mytree, data = tree_with_data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon 1, -, 0.1, 8.525, 27.727, 5.475, 5011,1,0.1389,10.750025,32.16332,5.475,50 12,1,0.1389,11.50875,29.168804,5.475,50 111,11,0.55,12.276,35.49056,5.475,50 112,11,0.55,11.227425,28.55881,5.475,50 121, 12, 0.55, 13.14555, 32.191047, 5.475, 50 122, 12, 0.55, 12.028775, 25.897018, 5.475, 50 1111,111,5,15.8565,39.566429,5.475,50 1121,112,5,14.50955,31.802869,5.475,50

JuDGE.visualize_tree(mytree, data)

Scenario tree for demand

mytree, data = tree_with_data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon 1, -, 0.1, 8.525, 27.727, 5.475, 5011,1,0.1389,10.750025,32.16332,5.475,50 12,1,0.1389,11.50875,29.168804,5.475,50 111,11,0.55,12.276,35.49056,5.475,50 112,11,0.55,11.227425,28.55881,5.475,50 121, 12, 0.55, 13.14555, 32.191047, 5.475, 50 122, 12, 0.55, 12.028775, 25.897018, 5.475, 50 1111,111,5,15.8565,39.566429,5.475,50 1121,112,5,14.50955,31.802869,5.475,50

JuDGE.visualize_tree(mytree, data)

Setting the solvers

```
env = Gurobi.Env()
```

JuDGE_SP_Solver = optimizer_with_attributes(() ->
Gurobi.Optimizer(env), "OutputFlag" => 0, "MIPGap" =>
0.0)

Setting the solvers

env = Gurobi.Env()

JuDGE_SP_Solver = optimizer_with_attributes(() ->
Gurobi.Optimizer(env), "OutputFlag" => 0, "MIPGap" =>
0.0)

JuDGE_MP_Solver = optimizer_with_attributes(() ->
Gurobi.Optimizer(env), "OutputFlag" => 0, "Method" =>
2, "Crossover" => 0, "MIPGap" => 0.0)

Setting the solvers

```
env = Gurobi.Env()
```

JuDGE_SP_Solver = optimizer_with_attributes(() ->
Gurobi.Optimizer(env), "OutputFlag" => 0, "MIPGap" =>
0.0)

JuDGE_MP_Solver = optimizer_with_attributes(() ->
Gurobi.Optimizer(env), "OutputFlag" => 0, "Method" =>
2, "Crossover" => 0, "MIPGap" => 0.0)

Defining subproblems

function sub_problems(n::AbstractTree)

sp = JuMP.Model(JuDGE_SP_Solver)

@expansion(sp, 0 <= investment[k in 1..invest_keys] <=
numUnits[k], lag = 1)#, Int)</pre>

@capitalcosts(sp, lifetime[n] *
sum(sum(l.generators[g].capitalcosts *
l.generators[g].investment
* investment[(i, g)] / l.generators[g].numUnits
for g in keys(l.generators)) for (i, l) in
data[n].locations))

Defining subproblems

function sub_problems(n::AbstractTree)

sp = JuMP.Model(JuDGE_SP_Solver)

@expansion(sp, 0 <= investment[k in 1..invest_keys] <=
numUnits[k], lag = 1)#, Int)</pre>

@capitalcosts(sp, lifetime[n] *
sum(sum(l.generators[g].capitalcosts *
l.generators[g].investment
* investment[(i, g)] / l.generators[g].numUnits
for g in keys(l.generators)) for (i, l) in
data[n].locations))

Defining subproblems

@variable(sp, output[gen_keys] >= 0) @variable(sp, CO2emission[gen_keys] >= 0) @variable(sp, 0 <= flow[(l, k, j, b, h) in flow_keys] <= data[n].network[(l, k)]) @variable(sp, target[(l, t) in target_keys] >= 0) @variable(sp, storage[(l, t, h) in storage_keys] >= 0)

• • • • • •

Defining subproblems

@objective(sp, Min, sum(10000 * investment[(1, g)]
for (1, g) in invest_keys) +
sum(data[n].locations[1].generators[g].SRMC *
output[(1, t, b, h, g)]
* ... for (1, t, b, h, g) in gen_keys)))

Defining subproblems

@objective(sp, Min, sum(10000 * investment[(1, g)]
for (1, g) in invest_keys) +
sum(data[n].locations[1].generators[g].SRMC *
output[(1, t, b, h, g)]
* ... for (1, t, b, h, g) in gen_keys)))

@constraint(sp,load_balance[(l, t, b, h) in shed_keys], data[n].locations[l].loadblocks[b].load * data[n].seasons[t].demand - shedding[(l, t, b, h)] == sum(output[(l, t, b, h, g)] for g in keys(data[n].locations[l].generators)) ...

Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)
solution = JuDGE.solution_to_dictionary(model)
(some code to set up custom_plots using plotly)
JuDGE.visualize_tree(mytree, solution,
custom=custom_plots)

Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)

solution = JuDGE.solution_to_dictionary(model)

(some code to set up custom_plots using plotly)
JuDGE.visualize_tree(mytree, solution,
custom=custom_plots)

Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)
solution = JuDGE.solution_to_dictionary(model)
(some code to set up custom_plots using plotly)

JuDGE.visualize_tree(mytree, solution, custom=custom_plots)

Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)
solution = JuDGE.solution_to_dictionary(model)
(some code to set up custom_plots using plotly)
JuDGE.visualize_tree(mytree, solution,
custom=custom_plots)

The End

JuDGE. jl Julia Library downloadable from

https://github.com/EPOC-NZ/JuDGE.jl

My contact:

a.philpott@auckland.ac.nz Technical questions to: a.downward@auckland.ac.nz