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Application: Planning for a net-zero carbon economy

New Zealand CO2 emission budgets (NZCCC May 31, 2021).
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Electricity investment in renewable energy

1 Many countries want to grow renewable
electricity capacity.

2 NZ: Climate Change Commission (CCC) sets
carbon budgets to reach a net zero status by
2050.

3 This will translate to emission prices for
electricity generators.

4 Principal-agent model: government policy
determines emission price and generators invest
in (mainly renewable) technology (see e.g.
Quiroga, Sauma, and Pozo, 2019).

5 Research question: what happens when there is
uncertainty and investors are risk averse?



Introduction Risk-averse social planning problem A principal-agent model Solving the principal agent problem Results

Principal agent model in perfect, complete markets
[Ralph &Smeers 2015, Ehrenman et al 2011, P.,Ferris & Wets, 2016]

Theorem

(Risked equilibrium) If markets are competitive, convex and
complete, and agents optimize using similar coherent risk
measures, then partial equilibrium of the electricity market
investment game is the same as the solution to a risk averse
stochastic optimization problem (social planning problem).

How to deal with an incomplete market for risk.
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Two-stage social planning problem
[Ferris & P., 2021]

Social planner s minimizes a coherent risk measure ρs .
Example: convex combination of expectation E and worst
case W of loss distribution Zs :

ρs (Z ) = (1− σ)E[Zs ] + σW[Zs ]

When distribution finite, express as optimal value function.

ρs (Z ) = min σθs + (1− σ)∑ω P(ω)Zs (ω)

s.t. θs ≥ Zs (ω)
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Social planning problem example
[Kok, P., Zakeri, 2018]

SP: min ∑a κaxa + ρs (∑t∈T Zs (ω, t))

s.t. Zs (ω, t) = ∑a(Ca + eaτ)ya(ω, t)
+∑bvbqb(ω, t)− rb(db(ω, t)− qb(ω, t))

za ≤ ua + xa,
ya(ω, t) ≤ µa(ω, t)za,

qb(ω, t) ≤ db(ω, t),
∑b db(ω, t) ≤ ∑a ya(ω, t) +∑b qb(ω, t),

x , z , y , q ≥ 0.
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Generator agent (a)

Generators minimize capital cost plus risk-adjusted losses

min κaxa + ρa(∑t∈T Za(ω, t)),

s.t. Za(ω, t) = (Ca + τea − π(ω, t))ya(ω, t)

za ≤ ua + xa, [νa]

ya(ω, t) ≤ µa(ω, t)za, [σa(ω, t)]

xa, z , y ≥ 0.
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Risk measure is combination of expectation and worst case

Za(ω, t) = (Ca + τea − π(ω, t))ya(ω, t)

min κaxa + αθa + (1− α)∑ω P(ω)∑t∈T Za(ω, t))

s.t. θa ≥ ∑t∈T Za(ω, t), [αλa(ω)]

za ≤ ua + xa, [νa]

ya(ω, t) ≤ µa(ω, t)za, [σa(ω, t)]

x ,z , y ≥ 0.
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KKT(a): Optimality conditions for generator a

1 = ∑ λa(ω) ⊥ θa,

0 ≤ θa − Za(ω) ⊥ λa(ω) ≥ 0

0 ≤ ua + xa − za ⊥ νa ≥ 0

0 ≤ µa(ω, t)za − ya(ω, t) ⊥ σa(ω, t) ≥ 0

0 ≤ κa − νa ⊥ xa ≥ 0

0 ≤ νa −∑ω ∑t∈T µa(ω, t)σa(ω, t) ⊥ za ≥ 0

0 ≤ αλa(ω)(Ca + τea − π(ω, t)) + σa(ω, t)
+(1− α)P(ω)(Ca + εηa − π(ω, t)) ⊥ ya(ω, t) ≥ 0
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Buyer agent (b)

Electricity buyer (retailer) b minimizes risk-adjusted net cost
of customer supply.

min ρb(∑t∈T Zb(ω, t)),

s.t. Zb(ω, t) = (rb + vb − π(ω, t)) · qb(ω, t)

+(π(ω, t)− rb) · db(ω, t),

qb(ω, t) ≥ 0.
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Risk measure is combination of expectation and worst case

Zb(ω, t) = (rb + vb − π(ω, t)) · qb(ω, t)

+(π(ω, t)− rb) · db(ω, t)

min βθb + (1− β)∑ω P(ω)∑t∈T Zb(ω, t)

s.t. θb ≥ ∑t∈T Zb(ω, t), [bλb(ω)]

qb(ω, t) ≤ d(ω, t), [ψb(ω, t)]

qb(ω, t) ≥ 0.
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KKT(b): Optimality conditions for buyer b

Zb(ω, t) = (rb + vb − π(ω, t)) · qb(ω, t)

+(π(ω, t)− rb) · db(ω, t)

1 = ∑ λb(ω) ⊥ θb ,

0 ≤ θb −∑t∈T Zb(ω, t) ⊥ λb(ω) ≥ 0

0 ≤ βλb(ω)(rb + vb − π(ω, t)) + ψb(ω, t)
+(1− β)P(ω)(rb + vb − π(ω, t)) ⊥ qb(ω, t) ≥ 0

0 ≤ db(ω, t)− qb(ω, t) ⊥ ψb(ω, t) ≥ 0
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MC: Market-clearing conditions

0 ≤ ∑a ya(ω, t) +∑bqb(ω, t)−∑bdb(ω, t) ⊥ π(ω, t) ≥ 0.
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Principal solves optimization problem

P: min ∑a κaxa + σθs

+(1− σ) ∑ω P(ω)(∑a Za(ω, t) +∑b Zb(ω, t))

s.t. θs ≥ ∑t∈T ∑a Za(ω) +∑t∈T ∑b Zb(ω)

KKT(a), a ∈ A,

KKT(b), b ∈ B,

MC.
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Reformulate KKT conditions using binary variables
[Fortuny-Amat & McCarl, 1981]

Replace

0 ≤ F (x , y) ⊥ x ≥ 0

with

0 ≤ x ≤ Mz

0 ≤ F (x , y) ≤ M(1− z)

z ∈ {0, 1}



Introduction Risk-averse social planning problem A principal-agent model Solving the principal agent problem Results

Principal-agent problem is MIQP

Because of bilinear terms from choosing worst-case probability
distribution using multpliers, we get a mixed integer quadratic
program.

Solve MIQP using Gurobi.

Advantage: Global optimality of MIQP enables search for
multiple equilibria (Gerard et al 2018).

Disadvantage: Big M constraints do not scale well.
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Case study

Example

Example
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Wind load factors have three scenarios

Example

We set retail price of electricity =$200/MWh and
VOLL=$1000/MWh for all consumers
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Risk neutral social plan (sigma=0)
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Risk averse social plan (alpha = beta = sigma = 0.5)
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Risk averse equilibrium (sigma = 0.5)
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Average CO2 emissions with CO2 price

In this example, CO2 emissions decrease with carbon tax but risk
trading can increase emissions.
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Equilibrium solutions when CO2 tax = $10/t

Incomplete case: in low-wind peak load scenario, high prices pay for
wind capacity. Lack of risk trading between generators and
purchaser leads to low purchaser welfare.

Complete case: Welfare is enhanced by risk trading between gas
generator and purchaser but more gas generation increases
emissions from 5.5Mt p.a. to 17.2 Mt p.a.
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Conclusion

Emission budgets stimulate renewable investment through
carbon prices.

Investment might be socially suboptimal if risk averse agents
cannot trade risk.

Competitive equilibrium in incomplete risk market might
achieve CO2 budget at a lower carbon price.

Next talk: assume there is enough risk trading to deliver
social optimum and plan accordingly.
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Conclusion

THE END
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