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SDDP and MPC

o SDDP (Stochastic Dual Dynamic Programming)

» Sample random variables to yield finite scenario tree (SAA).
» Approximately solve SAA problem using cutting planes.

o MPC (Model Predictive Control)

» Estimate expectations of random variables and solve deterministic DP.
» Implement stage 1 solution, transition to next stage, re-estimate, and
re-solve.

o SDDP versus MPC

» Guan, Z., SDDP Production planning model, Fonterra report, 2019.
» Martin, T., Stochastic optimization for the procurement of crude oil in
refineries, PhD thesis, CERMICS, 2021.
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Experiments on Fonterra production-inventory problem

[Z. Guan, 2019]
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Revenues from out-of-sample simulations of inventory policies at Fonterra dairy
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Experiments on crude oil production-inventory problem

policy Expert | Triplet SDP.s, | SDPcyar | Suc-SDP | optimum
1%t crude H2 B3 H4 L% L2 H5 H5
2nd crude L2 H4 1.2 H1 H1 L2 1.2
3 crude B5 L4 B1 Bl Bl B1 Bl
margin (410735) 5.13 5.58 7.490 6.39 6.39 7.491 7.491
gap (to Expert) 0 8.9% | 46.0% | 24.6% 24.6% 46.0% 46.0%

Table 7.4: Operational margin and combination of crude oils generated by each

policy for the historical scenario of December 2020
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Summary
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Summary

(@ Certainty equivalence and myopic solutions
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When does MPC = SDP?

o [Simon, 1956] Univariate control problem
Xe+1 = Xt + Ut + &

quadratic costs on v and x, random ¢&;.
o [Theil, 1957] Extensions to multivariate control problem

Xt+1 = Xt + Buy + &

o [Ziemba,1971] Extensions to constraints on controls.

o [See e.g. Bertsekas, 1976] Linear Quadratic Regulator
Xt11 = AXt -+ BUt + &

o [Arrow et al, 1951, Bellman et al, 1955, Scarf, 1960] (S, s) inventory
policies.

o [Mossin,1968] Multiperiod portfolio analysis.
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Inventory example 1

Consider a company trading in a single product that incurs an inventory
cost R(x) for storage quantity x, where R(x) is a differentiable, strictly
convex increasing function with R(0) = R’(0) = 0. In each time period t

the company observes the realization p of a random price P (i.i.d.) at
which it can sell vy < x; .

Assumption (1)

uy can be negative, allowing purchases at p.

Solution (c.f. [Bellman, 1955])

Optimal policy is myopic, i.e. sell/buy to achieve inventory target z where
R'(z) = (E[P] — p)+ This is the same as optimal MPC policy (which
optimizes using expected future prices).
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Inventory example 2

Consider a company trading in a single product that incurs an inventory
cost R(x) for storage quantity x, where R(x) is a differentiable, strictly
convex increasing function with R(0) = R’(0) = 0. In each time period t
the company observes the realization p of a random price P (i.i.d.) at
which it can sell u; < x;.

Assumption (2)

us > 0, so purchases are not allowed.

Solution (DP)

Optimal DP policy stores to exploit option value in future prices.

Solution (MPC)

Optimal MPC policy (optimizing using expected future prices) stores less
than DP.
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Summary

(3 DRO and out-of-sample improvement
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Sample average approximation

Consider a stochastic optimization problem
SP: minyex Ep [c(x, )],

where ¢ has probability measure IP. Given sample S = {¢;,&,,..., ¢y}
the sample average approximation is

SAA:  min,ex Ep, [c(x,&)],

where IPj is the probability measure that assigns mass ﬁ toeach ¢; € S.
The distributionally robust version of SAA sets Ps = {Q : d(Q,[Py) < 6}
and solves

DRO:  minyex supgep, Eq [c(x,§)].
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Sample average approximation

Assume that SP, SAA and DRO all have unique optimal solutions denoted
x*, x0(S), and x5(S) respectively. Observe that xo(S) and x;(S) depend
on the sample S. For any 6 > 0, we let x; = Eg[xs(S)]. If x5 = x* then
the solution x5(S) is unbiased.

Definition

The out-of-sample improvement of x5(S) is

Es[Ep [c(x0($5).£)]] — Es [Ep [c(x5(5). 0)]]
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Bias and variance

Definition
The cost bias of x5(S) is

Bs = Ep[c(%s. §)] — Bp[c(x", )]

Definition

The variance of x3(S) is

Vs = Es[(x(S) — %)%

Example

Let c(x, &(w)) = 3x* — Z(w)x and 6 = 0. Then x* = Ep[Z(w)] and

) =
x0(S) = Ep,[Z(w)]. Since Xy = Es[x(S)] = Ep[Z(w)] we have B, = 0.
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Quadratic costs

Proposition

Suppose c(x, &(w)) = ix"H(w)x? — Z(w) " x. A solution x5(S) to DRO
yields a lower expected out-of-sample cost than a solution xy(S) to SAA if
and only if

Bs—By < 3Esl(x0(S) — 5) TE[H](0(S) ~ %)
~SEs[((S) — %) TEIH](o(S) — %))

Bias-variance: LHS is the increase in cost bias and RHS measures a
(scaled) reduction in variance of xs(S).

Corollary

If DRO reduces cost bias and variance then it gives positive out-of-sample
improvement.
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Quadratic example

Let c(x, &(w)) = 3x* — Z(w)x, so B, = 0. Positive out-of-sample
improvement <= B; < Vo — V.

Example (Anderson and P., 2021)
Sample S = {z1,2,...,zy} from F(z), Ps = {p: LIty |pi — %] < 6.

Proposition
If F is symmetric then B5 > Vo — V.

Proposition
It F is “right skewed” then B; < Vi — Vs for small enough §.
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Summary

(@ MPC and out-of-sample improvement
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SAA for Inventory problem 2 (no purchases)

In Inventory problem 2, the sample average approximation yields a
dynamic program DP using sample S = {p1, p2, ..., pn} where Py is the
probability measure that assigns mass ﬁ to each p; € S replacing P.

If purchasing is not allowed (u; € Ry ) then:

Solution (SAA of DP)

For each price p; there is an SAA inventory target zsaa(p;i). Sell
u*(x, pi) = (x — zsaa(pi)) -

Solution (MPC)

MPC inventory target zypc(p;i) solves R'(z) = (Ep,[P] — pi)+. Sell
u*(x, pi) = (x — zmpc (pi)) 4

Proposition

zmpc (pi) < zsaa(pi). Given S, the MPC solution performs worse
(in-sample) than the DP solution.
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Out-of-sample improvement

o If purchasing is not allowed (u: € Ry) then MPC solution stores less
than DP solution (it ignores optionality).

o MPC solution solves DRO for Ps = {IPg, Do} where Dy assigns unit
mass to Ep,[P].

o Interpret as total variation uncertainty set on supp(IPy)Usupp(IDyg).

o Predict negative out-of-sample improvement from MPC when P has a
symmetric distribution?

o Predict positive out-of-sample improvement from MPC when P has a
“right-skew” distribution?
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Simulations assuming no purchasing

Assumption

R(x) = $x?, xo =50, 10° simulations with N = 2.

include("2price-sims.j1l")

Expected SDP objective: -2726.2414
Expected MPC objective: -2725.1122
Improvement: -1.1292 std error: 0.6187

P has uniform density on [0, 100]

include("2price-sims.jl1")

Expected SDP objective: -148.8841
Expected MPC objective: -175.0027
Improvement: 26.1186 std error: 0.7106

P has lognormal density (1,1)
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Simulations assuming no purchasing
Assumption

R(x) = $x%, xo = 50, 10° simulations with N = 3.

include("3price-simsV2.j1")

Expected SDP objective: -2780.3698
Expected MPC objective: -2767.7264
Improvement: -12.6434 std error: ©.6542

P has uniform density on [0, 100]

include("3price-simsV2.j1")

Expected SDP objective: -172.8223
Expected MPC objective: -199.7452
Improvement: 26.9228 std error: ©.6593

P has lognormal density (1,1)
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Conclusions

o Why is model predictive control very popular in practice?

» DP is hard in high dimensions;
» DP is hard if there are complicated constraints.

o SDDP can overcome these impediments, but requires finite
distributions.

o SDDP applies SAA with modest sample size to stage problem.

o Using SAA the optimal solution to DP can give a worse solution than
MPC when evaluated out of sample.

o Interpretation of MPC as distributionally robust optimization is
fruitful.
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