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Background
Multi-horizon planning

The concept of multi-horizon modelling is the idea that you are planning for across
multiple time-horizons at once (short-term, medium-term, and long-term) and are
explicitly accounting for how strategic, tactical and operational decisions influence each
other.

In this talk, we will be considering this type of problem in the context of stochastic
capacity expansion models.

In the short-term, we have operational decisions that result in immediate costs and
revenue; however, at the same time the decision maker is considering capacity
expansion decisions that will lead to lower operational costs, or higher revenue in the
future.
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Background
Implementation and communication of policies

Stochastic programming has been promoted in academia for decades, but has only
recently been gaining traction in capacity planning settings within business.

In part, the delay in acceptance has been due to the limitations in the size of problems
that could be modelled, but more significantly the solution to a stochastic program is a
policy that adapts to information as it is revealed, and this has been difficult
communicate to decision makers.

The concept of Dynamic Adaptive Pathways has made in-roads in areas where there is
deep uncertainty, particularly climate change planning.2 This, however, is typically
more qualitative than quantitative.

2M. Haasnoot, J.H. Kwakkel, W.E. Walker, J. ter Maat, Dynamic adaptive policy pathways: A
method for crafting robust decisions for a deeply uncertain world (2013).
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Multi-horizon modelling framework
Implementation and communication of policies

In this talk, I will present EMERALD, a multi-horizon electricity capacity planning
model built using the JuDGE.jl3, package for Julia. This package

– allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

– applies Dantzig-Wolfe decomposition in order to solve large-scale models; and

– applies end-of-horizon risk-measures in objective function and/or the constraints;
and

– outputs an interactive view of the results over the scenario tree, enabling decision
makers explore the optimal policy.

3A. Downward, R. Baucke, A.B. Philpott, JuDGE.jl: a Julia package for optimizing capacity
expansion (2020). (JuDGE stands for Julia Decomposition for Generalized Expansion.)
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Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity planning problems.

– N is the set of nodes in the scenario tree;

– ϕn the probability of the state of the world n
occurring;

– Pn the set of nodes on the path to (and
including) node n;

– m is the number of expansion variables;

– zn ∈ Zm
+ are the variables for the expansions

made at node n;

– yn is the variable vector for stage-problem n;

– Yn is the stage-problem feasibility set.
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Extensive Form:
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y ,z
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n∈N
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⊤
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Figure 1 A scenario tree with nodes N = {1,2, . . . ,18}, and T = 4

P: min
∑

n∈N φn(c>nxn + d>nxn + q>n yn)

s.t. Anyn ≤ un +Un
∑

h∈Pn
xh−Vn

∑
h∈Pn

xh, n∈N ,

yn ∈Yn, n∈N ,

∑
h∈Pn

xh ≤ 1m, n∈N ,

∑
h∈Pn

xh ≤ 1m, n∈N ,

xn, xn ∈ {0,1}m, n∈N .

L = {10, 11, 12, 13, 14, 15, 16, 17, 18}
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Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity planning problems.

JuDGE applies Dantzig-Wolfe decomposition to
the problem by automatically constructing a mas-
ter problem that handles the investment decisions,
and generates columns from the nodal subprob-
lems.

These columns’ costs are the operational costs of
the nodal subproblems, and the columns’ coeffi-
cients are the utilized investments.
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Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

The columns are indexed j ∈ Jn for each node n,
and added to the restricted master problem, with
cost ψj

n and coefficients ẑ jn.

This problem seeks to choose investments x
that minimize the total expected cost, given the
columns that have been generated.

Restricted Master Problem:

min
x ,w

∑
n∈N

ϕn(c
⊤
n xn + ∑

j∈Jn

ψj
nw

j
n)

s.t. ∑
j∈Jn

ẑ jnw
j
n ≤ ∑

h∈Pn

xh, ∀n ∈ N ,

∑
j∈Jn

w j
n = 1, ∀n ∈ N ,

w j
n, xn ≥ 0, ∀n ∈ N , j ∈ Jn.
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Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

This problem is solved without any integer variable
restrictions, since dual variables are needed for the
column generation process.

If the optimal solution is not naturally integer,
JuDGE supports both MIP solves for the master,
and branch-and-price to find integer feasible solu-
tions.
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Multi-horizon modelling framework
Elements of a JuDGE Model

JuDGE enables the formulation of multistage stochastic capacity management
problems leveraging the JuMP mathematical modelling language within Julia.

Modelling these problems consists of several elements:

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs.

Given these elements, JuDGE can automatically form the restricted master problem,
and provide the machinery necessary for the iterations of the Dantzig-Wolfe algorithm.

Various solvers can be specified for the different models that are being solved. The LP
relaxation of the restricted master problem is typically solved with an interior point
method, and the subproblems are solved as mixed-integer programs.

Alternatively, JuDGE can formulate the deterministic equivalent problem directly as a
JuMP model (mixed-integer program).
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Medium-term Operational Model
Defining the Subproblems

We will present a electricity generation expansion problem for a competitive electricity
market with a complete risk market, and go through the steps necessary to model this.

We have sets:

– technologies t ∈ T ;

– load blocks b ∈ B; and
– hydrological years h ∈ H.

The variables are:

– zt number of units to build for technology t; and

– gbh
t generation from technology t in load block b, with hydrological year h.

The parameters are:

– db demand in load block b;

– ut initial capacity of technology t;

– Ut capacity of each new unit of technology t; and

– θbt is the capacity factor for technology t in load block b.
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Medium-term Operational Model
Defining the Subproblems

Load balance:
∑
t∈T

gbw
t = db, ∀b ∈ B,w ∈ W ,

Generation capacity:

0 ≤ gbh
t ≤ θbt (ut + ztUt) ∀b ∈ B,w ∈ W , t ∈ T ,

Hydro availability:
∑
b∈B

gbh
hydro × ∆b ≤ µh ∀h ∈ H,

Integer expansions:

zt ∈ [0, 1, . . . ,Zt ] ∀t ∈ T , i ∈ {1, . . . ,N}.
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Medium-term Operational Model
Objective Functions

The objective function of the nodal subproblem is to minimize the operational costs of
the electricity system:

min ∑
b∈B

∆b ∑
h∈H

ρh ∑
t∈T

(ct + τet)g
bh
t ,

where ∆b is the number of hours corresponding to load block b;
ρw is the probability of hydrological year h;
ct is the marginal cost of technology t;
et gives the emissions factor of technology t; and
τ is the carbon tax.

Due to the decomposition, we must separately account for the cost of investments over
the tree:

min ∑
n∈N

ϕn ∑
t∈T

Ctxt ,

where ϕn is the probability of reaching node n, and Ct is the capital cost (per unit) of
technology t, and xt represents the investment decision for technology t in the master
problem.
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Scenarios for the future
What investments should be made?

14 scenarios for electricity demand and generation mix in 2050.
There are 14 different ‘optimal’ plans: which should be implemented, if any?



Demand scenarios
The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand

Industrial demand

Electric Vehicle demand

Tiwai Point Smelter demand

Total demand

10/24/21, 6:10 AM consumer.svg

file:///C:/Users/adow031/Downloads/consumer.svg 1/1

27.727

30.6661

30.6938

35.4074

38.9287

38.9287

35.4074

38.9287

38.9287

30.6938

35.4074

38.9287

38.9287

35.4074

38.9287

38.9287

30.6661

30.6938

35.4074

38.9287

38.9287

35.4074

38.9287

38.9287

30.6938

35.4074

38.9287

38.9287

35.4074

38.9287

38.9287

27 30 33 36 39



Demand scenarios
The annual demand (TWh) is a stochastic process, modelled using a scenario tree.
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Demand scenarios
The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand

Industrial demand

Electric Vehicle demand

Tiwai Point Smelter demand
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Demand scenarios
The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand

Industrial demand

Electric Vehicle demand

Tiwai Point Smelter demand

Total demand
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Demand scenarios
The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand

Industrial demand

Electric Vehicle demand

Tiwai Point Smelter demand

Total demand
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Demand scenarios
The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand

Industrial demand

Electric Vehicle demand

Tiwai Point Smelter demand

Total demand
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Multi-horizon modelling
Creating and solving the JuDGE Model

Once a tree has been created, and a function declared which defines the nodal
subproblems, we can create a JuDGEModel as follows:

model = JuDGEModel(tree, ConditionallyUniformProbabilities,

sub problems,optimizer with attributes((method=GLPK.INTERIOR)

-> GLPK.Optimizer(), "msg lev" => 0, "mip gap" => 0.0)

risk = Risk(0.25,0.1))

If the model passes the in-built testing, ensuring that the JuMP models are set up
correctly, the model can be solved using the command:
JuDGE.solve(model, Termination = termination(reltol=1e-4)
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Communication of JuDGE Solutions
Visualizing the policy

One of the challenges with stochastic multi-horizon optimization is the communication
of an optimal policy.

JuDGE provides a custom framework to interactively explore the policy, enabling users
to understand how the revelation of information influences the investment decisions,
but also how these, in turn, affect the operational decisions in the short-term.

This framework is built around html and javascript, and therefore is very flexible, with
the ability to integrate: maps, plots, svg graphics, or any other web-based visualization.
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Coal Rankine shutdown

There are two 250MW coal-
powered Rankine units near
Auckland. These have an O & M
cost of $70,000 / MWyr.

EMERALD will time the closure
of these plants along with invest-
ment in other generation tech-
nologies.

Scenario:
No Batteries
No EV smart charging
CO2 charge $50/TCO2e
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Optimal capacity mix
Risk-neutral solution
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Optimal capacity mix
Risk-averse solution
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Optimal capacity mix
Risk-neutral solution
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Optimal capacity mix
Risk-averse solution
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Installing and using JuDGE
Github Repository

https://github.com/EPOC-UoA/JuDGE.jl



Installing and using JuDGE
Installing the JuDGE Package



Installing and using JuDGE
Tutorials and Examples



Thanks for your attention.

Any questions?

JuDGE.jl Julia Library https://github.com/EPOC-UoA/JuDGE.jl

Contact me: a.downward@auckland.ac.nz

https://github.com/EPOC-UoA/JuDGE.jl
a.downward@auckland.ac.nz
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