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Multi-horizon planning

The concept of multi-horizon modelling is the idea that you are planning for across
multiple time-horizons at once (short-term, medium-term, and long-term) and are
explicitly accounting for how strategic, tactical and operational decisions influence each
other.

In this talk, we will be considering this type of problem in the context of stochastic
capacity expansion models.

In the short-term, we have operational decisions that result in immediate costs and
revenue; however, at the same time the decision maker is considering capacity
expansion decisions that will lead to lower operational costs, or higher revenue in the
future.
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Implementation and communication of policies

Stochastic programming has been promoted in academia for decades, but has only
recently been gaining traction in capacity planning settings within business.

2M. Haasnoot, J.H. Kwakkel, W.E. Walker, J. ter Maat, Dynamic adaptive policy pathways: A
method for crafting robust decisions for a deeply uncertain world (2013).
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Background

Implementation and communication of policies

Stochastic programming has been promoted in academia for decades, but has only
recently been gaining traction in capacity planning settings within business.

In part, the delay in acceptance has been due to the limitations in the size of problems
that could be modelled, but more significantly the solution to a stochastic program is a
policy that adapts to information as it is revealed, and this has been difficult
communicate to decision makers.

The concept of Dynamic Adaptive Pathways has made in-roads in areas where there is
deep uncertainty, particularly climate change planning.? This, however, is typically
more qualitative than quantitative.

2M. Haasnoot, J.H. Kwakkel, W.E. Walker, J. ter Maat, Dynamic adaptive policy pathways: A
method for crafting robust decisions for a deeply uncertain world (2013).
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Multi-horizon modelling framework

Implementation and communication of policies

In this talk, | will present EMERALD, a multi-horizon electricity capacity planning
model built using the JuDGE.jI3, package for Julia. This package

— allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

3A. Downward, R. Baucke, A.B. Philpott, JuDGE.jl: a Julia package for optimizing capacity
expansion (2020). (JuDGE stands for Julia Decomposition for Generalized Expansion.)
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Multi-horizon modelling framework

Implementation and communication of policies

In this talk, | will present EMERALD, a multi-horizon electricity capacity planning
model built using the JuDGE.jI3, package for Julia. This package

— allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

— applies Dantzig-Wolfe decomposition in order to solve large-scale models; and

— applies end-of-horizon risk-measures in objective function and/or the constraints;
and

— outputs an interactive view of the results over the scenario tree, enabling decision
makers explore the optimal policy.

3A. Downward, R. Baucke, A.B. Philpott, JuDGE.jl: a Julia package for optimizing capacity
expansion (2020). (JuDGE stands for Julia Decomposition for Generalized Expansion.)



Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity planning problems.

— N is the set of nodes in the scenario tree;
— ¢, the probability of the state of the world n
occurring;

Pn the set of nodes on the path to (and
including) node n;

m is the number of expansion variables;

z, € Z'" are the variables for the expansions
made at node n;

¥n is the variable vector for stage-problem n;

— YV, is the stage-problem feasibility set.
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. . ) Extensive Form:
— N is the set of nodes in the scenario tree;

— ¢, the probability of the state of the world n min 2 <Pn(CnTZn + qu—)/n)

occurring; I pen
— Pp the set of nodes on the path to (and st Awyn<b+D h;) zn, Vne N,
including) node n; n
— m is the number of expansion variables; Yn € Vn, VneN,
z, € ZI1, VneN.

z, € Z'" are the variables for the expansions
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¥n is the variable vector for stage-problem n;

— YV, is the stage-problem feasibility set.
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Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

JuDGE is a Julia/JuMP-based package that facilitates the modelling of multi-horizon
stochastic capacity planning problems.

Extensive Form:

JuDGE applies Dantzig-Wolfe decomposition to min Z bt 2o+, yn)

the problem by automatically constructing a mas-  *"°  neN

ter problem that handles the investment decisions, s.t. A,y, < b+ D Z zp, Vne N,
and generates columns from the nodal subprob- heP,

lems. Yn € Y, Vne N,

, _ zp € ZI1, VneN.
These columns’ costs are the operational costs of

the nodal subproblems, and the columns’ coeffi-
cients are the utilized investments.
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What type of problems can be modelled in JuDGE?
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Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

Restricted Master Problem:

The columns are indexed j € J, for each node n, min Z cp,,(chx,, + Z (/){,W{,)

and added to the restricted master problem, with ' neN JETn

cost ¢, and coefficients 2. s.t. Z dwl < 2 xp, Yn e N,
JETn heP,

This p.ro.blgm seeks to choose investments  x Z wi=1, VneN,

that minimize the total expected cost, given the jed,

columns that have been generated. (Additional
investments cannot decrease the set of feasible
columns.)

W{;,x,,ZO, VYneN,je T,



Multi-horizon modelling framework
What type of problems can be modelled in JuDGE?

Restricted Master Problem:

This problem is solved without any integer variable min Z qb,,(chx,, + Z lp{,wf,)
neN

X,W

restrictions, since dual variables are needed for the JETn
column generation process. s.t. Z ﬁf;wf; < Z xp, Vne N,
i€ hePy
If the optimal solution is not naturally integer, Z w{; —1 VneN,
JuDGE supports both MIP solves for the master, je7,
and branch-and-price to find integer feasible solu- ; .
pri ind integ ! . wl o x, >0, VYneN,je T,

tions.
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What type of problems can be modelled in JuDGE?

Restricted Master Problem:

This problem is solved without any integer variable min Z gbn(c,,Tx,, + Z IP{,W{,)
neN

X,W

restrictions, since dual variables are needed for the JETn

column generation process. st Y 2wl < Y x, VneN,
JETn heP,

If the optimal solution is not naturally integer, Z W{; —1 VneN,

JuDGE supports both MIP solves for the master, je7,

and branch-and-price to find integer feasible solu- W{;,xn >0 VneN.jeJd,

tions.
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Multi-horizon modelling framework
Elements of a JuDGE Model

JuDGE enables the formulation of multistage stochastic capacity management
problems leveraging the JuMP mathematical modelling language within Julia.
Modelling these problems consists of several elements:

— a tree with corresponding data and probabilities for each node;

— a subproblem defined as a JuMP model for each node in the tree; and

— expansion (and/or shutdown) decisions and costs.

Given these elements, JuDGE can automatically form the restricted master problem,
and provide the machinery necessary for the iterations of the Dantzig-Wolfe algorithm.

Various solvers can be specified for the different models that are being solved. The LP
relaxation of the restricted master problem is typically solved with an interior point
method, and the subproblems are solved as mixed-integer programs.

Alternatively, JuDGE can formulate the deterministic equivalent problem directly as a
JuMP model (mixed-integer program).
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Medium-term Operational Model
Defining the Subproblems

We will present a electricity generation expansion problem for a competitive electricity
market with a complete risk market, and go through the steps necessary to model this.

We have sets:

— technologies t € T ;

— load blocks b € B; and

— hydrological years h € H.
The variables are:

— zz  number of units to build for technology t; and

— gbh generation from technology t in load block b, with hydrological year h.
The parameters are:

— d®  demand in load block b;

- U initial capacity of technology t;

- U capacity of each new unit of technology t; and

- 9,‘_3 is the capacity factor for technology t in load block b.
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Defining the Subproblems

Load balance:
Y gt =d" VbeBweWw,
teT

Generation capacity:
0< gl <0P(u+2zU) VbeBweW,teT,

Hydro availability:
Y g X Ay < " VheH,

beB

Integer expansions:

zz€[0,1,...,2] VteT,ie{l,...,N}.
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Objective Functions

The objective function of the nodal subproblem is to minimize the operational costs of
the electricity system:
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beB heH  teT

where Ay is the number of hours corresponding to load block b;
Pw is the probability of hydrological year h;
¢t is the marginal cost of technology t;
e; gives the emissions factor of technology t; and
T is the carbon tax.
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Objective Functions

The objective function of the nodal subproblem is to minimize the operational costs of
the electricity system:

min Z Ap Z Oh Z(Ct + Ter)g!”,

beB heH  teT

where Ay is the number of hours corresponding to load block b;
Pw is the probability of hydrological year h;
¢t is the marginal cost of technology t;
e; gives the emissions factor of technology t; and
T is the carbon tax.

Due to the decomposition, we must separately account for the cost of investments over
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where ¢, is the probability of reaching node n, and C; is the capital cost (per unit) of
technology t, and x; represents the investment decision for technology t in the master
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Scenarios for the future
What investments should be made?

Increase in Demand for Generation by 2050

100
EY
80
0
&
> 5 48
z
E 2 * 32
0 ” 24 ©
20
10
10
: o -
mmmmm Vibrant e StuggingMone | Mixed TiwaiOFF Disuptive Offtrack inovative Kavak waka
opimet Faven Rerew
Productivity Conmision Transpower aie Wi i sc
Increase in Generation by 2050 by Technology
100

50

ENewHydro  mNew Geothermsl  mNewWind  NewGridSolar  =NewRooftcp PV mNew Other
80
) . . . . I = - . . I . -

poliey Disruptive Techno Vierane Mobilise  Struggling lone Mixed Tiwai Off Disruptive off track Innovative. Kayak
Optimist Renew

Productivity Commission Transpower HBiE Vvivid Viid sec

TWhry by 2050
&

14 scenarios for electricity demand and generation mix in 2050.
There are 14 different ‘optimal’ plans: which should be implemented, if any?



Demand scenarios

The annual demand (TWh) is a stochastic process, modelled using a scenario tree.
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Demand scenarios

The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand
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Electric Vehicle demand
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Demand scenarios

The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand

Industrial demand

Electric Vehicle demand

Tiwai Point Smelter demand

Total demand

0
I T .

5 10 15 20

s

@
14.1062
0 55\
.< 7421
22012

x 5043

\0<“

04917

0
/ n T
. 165556
2 533]\ .
./ 20
5 T

101389
165556



Demand scenarios
The annual demand (TWh) is a stochastic process, modelled using a scenario tree.
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Demand scenarios

The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Consumer demand
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The annual demand (TWh) is a stochastic process, modelled using a scenario tree.

Demand scenarios
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Multi-horizon modelling
Creating and solving the JuDGE Model

Once a tree has been created, and a function declared which defines the nodal
subproblems, we can create a JuDGEModel as follows:

model = JuDGEModel (tree, ConditionallyUniformProbabilities,
sub_problems,optimizer with attributes((method=GLPK.INTERIOR)
-> GLPK.Optimizer(), "msg lev" => 0, "mip_gap" => 0.0)
risk = Risk(0.25,0.1))
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Multi-horizon modelling
Creating and solving the JuDGE Model

Once a tree has been created, and a function declared which defines the nodal
subproblems, we can create a JuDGEModel as follows:

model = JuDGEModel (tree, ConditionallyUniformProbabilities,
sub_problems,optimizer with attributes((method=GLPK.INTERIOR)
-> GLPK.Optimizer(), "msg lev" => 0, "mip_gap" => 0.0)
risk = Risk(0.25,0.1))

If the model passes the in-built testing, ensuring that the JuMP models are set up
correctly, the model can be solved using the command:
JuDGE.solve(model, Termination = termination(reltol=le-4)
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Communication of JuDGE Solutions
Visualizing the policy

One of the challenges with stochastic multi-horizon optimization is the communication
of an optimal policy.
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but also how these, in turn, affect the operational decisions in the short-term.



Communication of JuDGE Solutions
Visualizing the policy

One of the challenges with stochastic multi-horizon optimization is the communication
of an optimal policy.

JuDGE provides a custom framework to interactively explore the policy, enabling users
to understand how the revelation of information influences the investment decisions,
but also how these, in turn, affect the operational decisions in the short-term.

This framework is built around html and javascript, and therefore is very flexible, with
the ability to integrate: maps, plots, svg graphics, or any other web-based visualization.
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Installing and using JuDGE
Github Repository

€ Gt repahaucke/unGE | X
€5 C @ © @ hisygitubcomreganbaucke/uDGE "o
P master - | ¥ 3branches ©0tags Gotofie About
Aninterface for solving a stochastic
# 200u031 Minor comections o ttorials « bas on3Nov ©l62commits  capacity expansion problem via a
Dantzig-Wolfe decomposition
docs Minor corections to tutorils lestmonth | algorithm
examples Subprobems no longer use @sp objective macro to declare objective lstmonth | [ Readme
src Subprobems no longer us jective macro ‘ lstmonth | g I License
D trisymi fived compatabilty vith Julia 1.0 for docs 4 months ago
B ucense Subproblems o longer use @spobjective macro to declre objective lstmonth  Releases
O Projectiom! Subproblems o longer Use @sp.objective macro to declre objective tast month e i
B READMEMA ed Optimization Oniine ln to documentation tast month
Packages
READMEmd
Nopackages publshed
Contributors
3 agouon
J u D G E o
Languages
i 10005
JUDGE stands for: Julia Decomposition for Generalized Expansion. Functionally, it is a solver which leverages the
syntax of the JuMP modelling language to solve a particular class of capacity expansion problems.
Please see the documentation for details about installing JUDGE, and examples showing how to set up a
stachastic capacity example model using the JuDGE]l package.
For more details see our working paper: JUDGE:a Julia package for aptimizing capacity expansion.

https://github.com/EPOC-UoA/JuDGE. j1



Installing and using JuDGE
Installing the JuDGE Package

DGE - WDGE i Decompsic X
€ 5 C @ O @ nips/ireganbauckegithubio/luDGE | B - »
WDGES: i DecompriionorGoerrFrsion | JUDGE O EditonGitHub 8

JuDGE

o Problem Class /Decomposition

= uDGE

Tutorials

API Reference

JuDGE,jl

JUDGE stands for: Julia D Functionally, it
syntax of the elass of

For i JUDGE j:a Jul pans

Problem Class / Decomposition

JuDGE The user
must spe the problem, and at canbe

alinear or integer program. Further, the exp: t be declared.

JuDGE |
solution.

Requirements

JUDGE requires Julia-1.3+, JuMP and r academics, Gurobi / CPLEX p
licenses, otherwise, you can use CBC/Clp or GLPK.

Installation

JUDGE is installed by the Pkg p Julia. In the Julia REPL, simpl

1 add "https://github. con/ reganbaucke/JuDGE. j1"

Then, in your Julia script, use

using JuDGE




Installing and using JuDGE

Tutorials and Examples
<« G @ O @ hips/reganbauckegithubio/JuDGE /tutorials B « » =

WOGE - i Dncpeiion o GenersiedFponsion. | Tutorials © EditonGitHub ¢

bt Tutorials

o] Tutorial 1: A basic JuDGE model
© Ttortal £ Abasc JDGE model

« Ttortal 2 Formating outpue Problem description

< Tutoria 3 Ongoingcots

For our tutorial, i imizatic inimi astochastic
© Tutorial 4: Deterministc cquivalent

sequence
& - wesolvea H i 3 pand the
o i tain cost, Once 2
© Tutoria 7:Risk aversion Vol
© Tutorisl B Shutdown varisbies . i

n P psack,
o Tutorial 9:Side-constraints more into our knapsack. D

problem.

API Reference

Solving our problem using JuDGE

L need JuDGE models.

using JUDGE, JultP, GLPK

The lifecycle of a JubGEMadel is the following:

1. The definition of a Tree;
2.defining the subproblems of the JuDGEHodel;
3.building the JubGENodel;

4.5olving the JUDGEMHode1

The user's L and 2, while JuDf 2

ATree A the tree, and a st of al the
Thisis defined wi being Leaf nodes. Each subtree.

- i

Fornow, depth3, i narytree

mytree = narytree(2,2)

Subtree rooted at node 1 containing 7 nodes

mytreeisa ins 7 nodes, with depth 2, and d (Adepth of O, gives only a single leaf node) We

canvisualise the tree using
Version | docs 3




Thanks for your attention.

Any questions?

JuDGE. j1 Julia Library https://github.com/EPOC-UoA/JuDGE. j1

Contact me: a.downward@auckland.ac.nz


https://github.com/EPOC-UoA/JuDGE.jl
a.downward@auckland.ac.nz
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