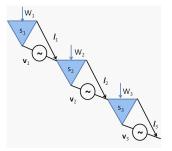
Mixed Integer Dynamic Approximation Scheme

Andy Philpott Electric Power Optimization Centre University of Auckland. www.epoc.org.nz

(Joint work with Faisal Wahid, Frederic Bonnans)

Motivation: daily hydro generation in a river chain



Given hourly electricity prices $\pi(t)$ the generator arranges releases $v_i(t)$ and spill $I_i(t)$ of water to maximize revenue $\sum_{t} \pi(t) \sum_{i} g_{i}(v_{i}(t))$ while respecting the water flow constraints of the river chain. Here g_i converts water flow into power.

Autoregressive price model and random inflows

Given initial state \mathbf{x}_0 , we seek an optimal policy yielding $V_1(\mathbf{x}_0)$, where

$$\begin{split} V_t(\mathbf{x}) &= \mathbb{E}_{\xi_t} \left[\max_{u \in U(x)} \{ r_t(\mathbf{x}, \mathbf{u}, \boldsymbol{\xi}_t) + V_{t+1}(f_t(\mathbf{x}, \mathbf{u}, \boldsymbol{\xi}_t)) \} \right], \\ V_{T+1}(\mathbf{x}) &= R(\mathbf{x}) \end{split}$$

$$\mathbf{x} = [\ s \ \ \boldsymbol{\pi} \]^\top, \ \mathbf{u} = [\ v \ \ l \]^\top, \ \boldsymbol{\xi}_t = [\ \omega_t \ \ \boldsymbol{\eta}_t \]^\top \\ f_t(s, \boldsymbol{\pi}, v, l, \omega_t, \boldsymbol{\eta}_t) = \begin{bmatrix} s_t - v_t - l_t + \omega_t \\ \alpha_t \boldsymbol{\pi}_t + (1 - \alpha_t) b_t + \boldsymbol{\eta}_t \end{bmatrix}, \\ r_t(s, \boldsymbol{\pi}, v, l, \omega_t, \boldsymbol{\eta}_t) = \boldsymbol{\pi} \sum_t g_i(v). \end{split}$$

- Stochastic programming (Fleten and Kristoffersen, 2007)
 Backward recursion (Pritchard and Zakeri, 2003)
- a CDDD (Davaina and Dinto 1001 D. Dallari, Callat 2012
- SDDP (Pereira and Pinto, 1991, P., Dallagi, Gallet, 2013)
- ADDP (Löhndorf et al, 2013)
- Linear decision rules (Braathen et al, 2013)
- SDDP with MIPs (Zhou, Ahmed, Sun, 2016)

Our approach

- Stochastic control using approximate dynamic programming.
- SDDP constructs cutting-plane outer approximation of convex or concave value functions.
- MIDAS: similar methodology to (approximately) solve stochastic optimal control problems with nonconvex value functions (e.g from AR model of price).
- Solves stage problems using mixed integer programming.
- Convergence requires monotonicity and continuity of $V_t(\mathbf{x})$.

- 1 Introduction
- 2 Outer approximation of value function
- MIDAS
- 4 Computational results
- Conclusions

Summary

- Introduction
- 2 Outer approximation of value function
- MIDAS
- 4 Computational results
- Conclusions

Given initial state x_0 , we seek an optimal policy yielding $V_1(x_0)$, where

$$V_t(x) = \mathbb{E}_{\xi_t} \left[\max_{u \in U(x)} \left\{ r_t(x, u, \xi_t) + V_{t+1}(f_t(x, u, \xi_t)) \right\} \right]$$

$$V_{T+1}(x) = R(x).$$

Here $V_t(x)$ denotes the maximum expected reward from the beginning of stage t onwards, given the state is x, and we take action u_t after observing the random disturbance \mathcal{E}_t . We assume that R(x) is continuous, and U(x) is sufficiently regular so that V_t is continuous if V_{t+1} is.

Given $\varepsilon > 0$, there is some δ so that for all t = 1, 2, ..., T + 1,

$$||x - y||_{\infty} < \delta \Rightarrow |V_t(x) - V_t(y)| < \varepsilon.$$

Outer approximation of continuous monotonic functions

Given a continuous nondecreasing function $Q(x) \leq M$, and a finite set of values

$$Q(x^h) = q^h, h = 1, 2, ..., H,$$

approximate Q(x) by a piecewise constant function $Q^{H}(x)$ so that for every x

$$Q(x) \leq Q^{H}(x) + \varepsilon$$

- q^h is a real number and Q^H is a function;
- Q(x) is assumed monotonic to guarantee that $Q(x) \leq Q^H(x) + \varepsilon$ for every x.

0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

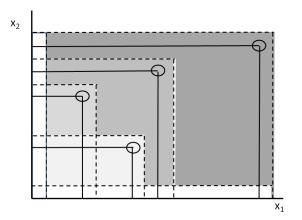
Y_{0.9} + 0.8 + 0.7 + 0.6 +

Approximation of $Q(x)=x+0.1\sin(10x)$ at points $x^h=0.1,0.5,0.7,0.9$, and $\delta=0.05$. $Q^H(x)$ shown in red is upper semicontinuous, and is an upper bound on $Q(x)-\varepsilon$.

MIP approximates a continuous monotonic function

Assume that

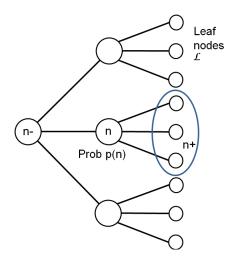
Example in two dimensions



Contour plot of $Q^H(x)$ when H=4. Circled points are x^h , h = 1, 2, 3, 4. Darker shading indicates increasing values of $Q^{H}(x)$ that equals $Q(x^h)$ in each region containing x^h , h = 1, 2, 3, 4. $Q^H(x)$ defined only when $x > \delta e$.

- MIDAS

Multistage algorithm uses a scenario tree



$$\begin{array}{ll} \mathsf{MSPT:} & \mathsf{max} & \sum_{n \in \mathcal{N} \setminus \{0\}} p(n) r_n(x_{n-}, u_n) + \sum_{n \in \mathcal{L}} p(n) R\left(x_n\right) \\ \mathsf{s.t.} & x_n = f_{n-}(x_{n-}, u_n, \xi_n), \\ & x_0 = \overline{x}, \\ & u_n \in U(x_n), \\ & x_n \in X_n. \end{array}$$

DP recursion is:

$$\begin{array}{lcl} V_{n}(x_{n}) & = & \sum\limits_{m \in n+} \frac{p(m)}{p(n)} \max_{u \in U(x_{n})} \left\{ r_{m}(x_{n}, u) + V_{m} \left(f_{n}(x_{n}, u, \xi_{m}) \right) \right\} \\ V_{n}(x_{n}) & = & R(x_{n}), \ n \in \mathcal{L}, \end{array}$$

where we seek a policy that maximizes $V_0(x_0)$.

MIDAS algorithm

- Set $Q_n^1(x) = M$, for every $n \in \mathcal{N} \setminus \mathcal{L}$;
- ② For H = 1, 2, ...,
- set $Q_n^H(x) = R(x)$, for every $n \in \mathcal{L}$;
- perform a forward pass then a backward pass.

Forward pass

Set $x_0^H = x_0$, and n = 0. While $n \notin \mathcal{L}$:

Outer approximation of value function

- Sample $m \in n+$ to give ζ_m^H ;
- If $\left\| f_n(x_n^H, u_m^H, \xi_m^H) x_m^h \right\|_{\infty} < \delta$ for h < H then set $x_m^{H+1} = x_m^h$, else set $x_m^{H+1} = f_n(x_m^H, u_m^H, \xi_m^H)$;
- \bigcirc Set n=m.

For the particular node $n \in \mathcal{L}$ at the end of forward pass update $Q_n^H(x)$ to $Q_n^{H+1}(x)$ by adding $q_n^{H+1} = R(x_n^{H+1})$ at point x_n^{H+1} . While n > 0

- \bigcirc Set n=n-:
- Ompute

$$\varphi_n = \sum_{m \in n+} \frac{p(m)}{p(n)} \max_{u \in U(x_n^H)} \left\{ r_m(x_n^{H+1}, u) + Q_m^{H+1}(f_n(x_n^{H+1}, u, \xi_m)) \right\}$$

1 Update $Q_n^H(x)$ to $Q_n^{H+1}(x)$ by adding $q_n^{H+1}=\varphi_n$ at point x_{-}^{H+1} :

Sampling property

FPSP: For each $n \in \mathcal{L}$, with probability 1

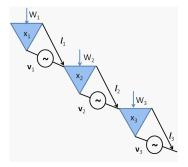
$$\left|\left\{H:\xi_n^H=\xi_n\right\}\right|=\infty.$$

$\mathsf{Theorem}$

If step 1 of forward pass satisfies FPSP then sampled MIDAS converges almost surely to a $(T+1)\varepsilon$ -optimal solution to MSPT.

- 4 Computational results

Recall hydro generation in a river chain



Given future electricity prices $\pi(t)$ the generator arranges releases $v_i(t)$ and spill $l_i(t)$ of water to maximize revenue $\sum_t \pi(t) \sum_i g_i(v_i(t))$ while respecting the water flow constraints of the river chain.

$$\mathbf{x}_{t+1} = f_t(\mathbf{x}, \mathbf{u}, \boldsymbol{\xi}_t),$$

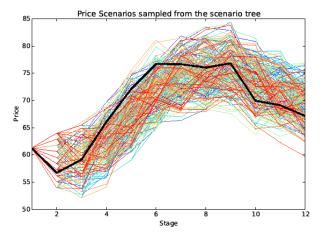
$$\left[\begin{array}{c} s_{t+1} \\ \pi_{t+1} \end{array} \right] = \left[\begin{array}{c} s_t - v_t - l_t + \omega_t \\ \alpha_t \pi_t + (1 - \alpha_t) b_t + \eta_t \end{array} \right],$$

Here ω_t is (random) reservoir inflow, η_t is error term for price model, so $\boldsymbol{\xi}_t = [\begin{array}{ccc} \omega_t & \boldsymbol{\eta}_t \end{array}]^{\top}$ and $\mathbf{u} = [\begin{array}{ccc} v & I \end{array}]^{\top}$ release and spill. Reward in stage t is

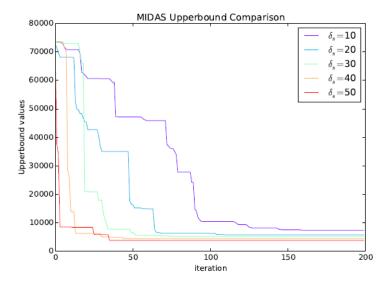
$$r_t(s, \pi, v, l, \omega_t, \eta_t) = \pi \sum_i g_i(v),$$

from released energy g(v) sold at price π , and $U(\mathbf{x}) = \{(v, l) : v \in U_0, v + l \in [0, s]\}.$

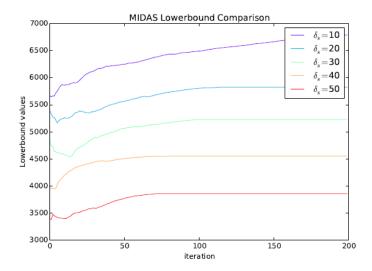
Price scenarios sampled from AR1 model



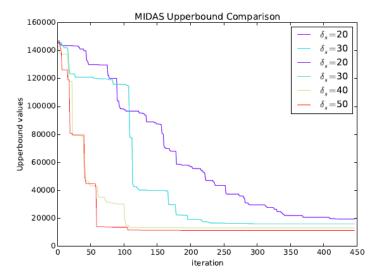
Epsilon upper bounds for single reservoir problem



Estimated policy payoffs for different delta



Epsilon upper bounds for two-reservoir problem



Summary

- Introduction
- Outer approximation of value function
- MIDAS
- 4 Computational results
- Conclusions

Conclusions

- SDDP has proved very successful in hydrothermal scheduling;
- Sampled trajectories reduce DP computation;
- Concave value functions a limitation;
- MIDAS is an attempt to extend these features to more general stochastic dynamic programs in the hope of making them tractable by solving small MIPs;
- Convergence wp1 can be shown for continuous monotonic value functions.

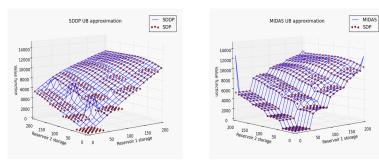
References

- Boomsma, T.K., Juul N. and Fleten S.E. Bidding in sequential electricity markets: The Nordic case EJOR, 238(3):797–809, 2014.
- Braathen, J and Eriksrud, A.L. Hydropower Bidding Using Linear Decision Rules. Institutt for industriell økonomi og teknologiledelse, 2013.
- Fleten, S.E. and Kristoffersen, T.K. Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer. EJOR, 181(2):916–928, 2007.
- Löhndorf, N., Wozabal, D. and Minner, S. Optimizing Trading Decisions for Hydro Storage Systems Using Approximate Dual Dynamic Programming. *INFORMS*, 61(4):801-823, 2013.

References

- Pereira M.V.F. and Pinto L.M.V.G. Multi-stage stochastic optimization applied to energy planning. Math Prog, 52(1):359–375, 1991.
- Philpott, A.B., Wahid, F. and Bonnans, J.F. Mixed Integer Dynamic Approximation Scheme. Optimization Online May 2016.
- Pritchard, G. and Zakeri, G. Market offering strategies for hydroelectric generators. Oper. Res, 51(4):602-612, 2003.
- Zhou, J. Ahmed, S. and Sun, A. Nested decomposition of multistage stochastic integer programs with binary state variables. Optimization Online May 2016.

SDDP and MIDAS for stochastic MIPs



True value function shown in red. SDDP and MIDAS give different outer approximations when true value function is not concave.

SDDP and MIDAS

Solved & simulated offer policy of MIDAS & SDDP for range of initial storage levels

MIDAS policy: On average 98% of optimal value SDDP policy: On average 93% of optimal value

	Mean	Median	Upper guartile	Lower quartile
SDDP	92.92	88.22	81.18	96.35
MIDAS	97.93	99.06	97.18	99.67

$\begin{array}{lll} V_H(x) = \max & \varphi \\ \text{s.t.} & \varphi & \leq & V^h + Mz^h, & h = 1, 2, \dots, H, \\ & x & \geq & x^hz^h + \delta, & h = 1, 2, \dots, H, \\ & z^h & \in & \left\{0, 1\right\}, & h = 1, 2, \dots, H. \end{array}$

Consider (x^h, V^h) , h = 1, 2, ..., H. The variable $z^h = 1$ picks out all the x^h lying at or below $x - \delta$. These do not constrain φ . The x^h lying strictly above $x - \delta$ have $z^h = 0$. Thus

$$V_H(x) = \min\{V^h : x^h > x - \delta\}.$$

Explanation of approximate stage problem 1

If $w_h = 0$ for some h then $\sum_k z_k^h = 1$, so $z_k^h = 1$ for exactly one k. The constraint

$$x_k \ge x_k^h z_k^h + \delta$$

means that there is at least one dimension k with $x_k > x_{\iota}^h$. So x is somewhere in the complement of the rectangular box

$$R = \{y \mid y \leq x^h\}$$
. Since $w_h = 0$, we have

$$\varphi \leq v_h + M$$

so the value v^h from top right-hand corner of R does not bound φ .

Explanation of approximate stage problem 2

If $x \le x^h$ for $h \in \mathcal{G} \subseteq \{1, 2, ..., H\}$, then for each $h \in \mathcal{G}$ we must have every $z_k^h = 0$, so $\sum_k z_k^h = 0$. It follows from

$$\sum_{k=1}^n z_k^h = 1 - w_h,$$

that $w_h = 1$, $h \in \mathcal{G}$, so the constraints become

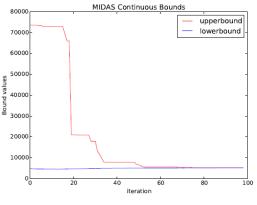
$$\varphi \leq v_h, \qquad h \in \mathcal{G},
x_k \geq 0 + \delta, \quad k = 1, \dots, n,$$

so this will result in

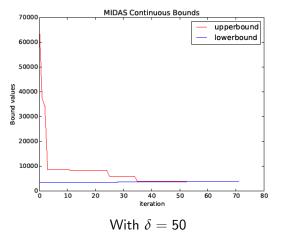
$$\varphi \leq \min\{v_h \mid h \in \mathcal{G}\},\$$

as desired.

Epsilon upper and lower bounds for single reservoir problem



Epsilon upper and lower bounds for single reservoir problem



Epsilon upper and lower bounds for single reservoir problem

