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Infinite transportation problems

min
∫
N
∫
M c(u, v)ρ(u, v)dxdy

s.t.
∫
N ρ(u, v)du = µ(u), u ∈ M,∫
M ρ(u, v)dv = ν(v), v ∈ N ,

ρ(u, v) ≥ 0, (u, v) ∈ M×N .



A picture from my PhD thesis

Transport U(0, 1) mass to U(0, 1) when c(u, v) = uv(u − v)



Gaspard Monge and Leonid Kantorovich

Source: Wikipedia
Source: "History of

mathematical programming",
Lenstra, Rinnooy-Kan, Schrijver.



Wasserstein distance (a.k.a. Kantorovich Metric)

Suppose (M, d) is a Polish metric space. For p ≥ 1 let Pp(M) denote
the collection of all probability measures µ on M with finite pth moment.
For distributions P,Q ∈ Pp(M) let Γ(P,Q) denote the set of joint
distributions with marginals P and Q. For p ≥ 1 the pth Wasserstein
distance under the metric d is defined as:

W p(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
M×M

d(u, v)pdγ(u, v)
) 1
p

.



Example: total variation

M = {z1, z2, z3, . . . , zN }, and d is the discrete metric

d(u, v) =
{
0, u = v
1, otherwise

.

In this case P and Q can be represented by probability distributions p, q
supported onM, and W 1(P,Q) reduces to the total-variation distance
∑Ni=1 |qi − pi |.



Examples

WhenM ⊆ Rn and d(u, v) = ‖u − v‖ (the standard Euclidean norm)
then

W 1(P,Q) = inf
γ∈Γ(P,Q)

∫
M×M

‖u − v‖dγ(u, v),

W 2(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
M×M

‖u − v‖2dγ(u, v)
) 1
2

.



Stochastic optimization

Stochastic optimization problem with random cost function c(x ,Z )

SO: min
x

EP[c(x ,Z )].

Expectations are taken over the random variable Z , with instance
z ∈ Rm , and probability distribution P.

We call SO the true problem.

Definition

Given any x , c̄(x) = EP[c(x ,Z )] is the out-of-sample cost of x
evaluated with the true probability distribution P.

Optimal solution of SO is denoted x∗, optimal objective value
C ∗ = c̄(x∗) = EP[c(x∗,Z )].



Resrict attention to convex quadratic programs

SO: min
x

EP[c(x ,Z )]

Let c(x , z) = 1
2 x
>H(z)x − v(z)>x where H(z) is positive definite a.s.

c̄(x) =
1
2
x>EP[H ]x −EP[v ]

>x .

Optimal solution x∗ = EP[H ]−1EP[v ]

Optimal objective function value is

c̄(x∗) = −1
2

EP[v ]
>EP[H ]

−1EP[v ].



Sample average approximation

The decision maker does not know P, but has a sample,
S = {z1, z2, ..., zN }, of Z .
Write P0 for the sample distribution which has probability 1

N at
each of the sample points in S = {z1, z2, ..., zN }.
Approximate the value of EP[c(x ,Z )] by EP0 [c(x ,Z )] and solve
the sample average approximation problem

SAA: minx∈X EP0 [c(x ,Z )].

Let x0(S) denote the solution of SAA (depends on sample S).

c̄(x0(S)) = EP[c(x0(S),Z )] is the out-of-sample cost of x0(S)
evaluated with the true probability distribution P. Note: this
depends on sample S .



Post decision disappointment

SAA solution value is biased low

ES [EP0 [c(x0(S),Z )]] ≤ c̄(x∗)

Out of sample cost of x0(S) is never lower than c̄(x∗), so

c̄(x∗) ≤ c̄(x0(S))

Promise of SAA solution is not delivered when evaluated out of
sample.

Consider some robustification xδ(S) of SAA solution.

Definition

Value of robustification, VRS(δ) = ES [c̄(x0(S))− c̄(xδ(S))].

When is VRS(δ) > 0?



Distributionally robust optimization (DRO)
[Scarf, 1958, Zackova, 1966, Pflug and Wozabal, 2007, ...]

Distributionally robust optimization (DRO) solves the following
problem

DRO: minx∈X supQ∈Pδ
EQ [c(x ,Z )] ,

for some choice of Pδ being a ball of size δ centered at P0.

We write xδ(S) for the optimal solution of DRO and write
Cδ(S) = c̄(xδ(S)) (the out-of-sample cost of xδ(S)).

When δ = 0 we have Pδ = {P0}, so then Cδ(S) = c̄(x0(S)).

We define Pδ for δ > 0 using a Wasserstein metric.

If δ chosen large enough then true distribution P lies in Pδ with high
probability (Fournier & Guillin, 2015). So, with high probability,

EQ∗ [c(xδ(S),Z )] ≥ EP [c(xδ(S),Z )] = c̄(xδ(S).



Out-of-sample performance for quadratics

Suppose C (x , z) = 1
2 x
>H(z)x2 − v(z)>x . Let x̄δ = ES [xδ(S)].

Definition

The cost bias of xδ(S) is

βδ = c̄(x̄δ)− c̄(x∗).

Definition

The variation of xδ(S) is

Vδ = ES [(xδ(S)− x̄δ)
>E[H ](xδ(S)− x̄δ)]

Proposition

If C (x , z) = 1
2 x
>H(z)x2 − v(z)>x then

VRS(δ) =
1
2
(V0 − Vδ)− (βδ − β0).



Examples

Example (1)

c(x , z) = 1
2 (x − z)2

Example (2)

c(x , z) = 1
2 x
2 − g(z)x



Example 1 with W1

DRO: minx∈X supQ∈Pδ
EQ

[
1
2 (x − Z )2

]
,

Pδ = {Q ∈ P1(M) : inf
γ∈Γ(P0,Q)

∫
M×M

‖u − v‖dγ(u, v) ≤ δ}

IfM = (−∞,∞) then supremum not attained: Q sends atoms to
infinity.
IfM = [a, b], then supremum attained: Q sends mass to a or b. For
δ > b− a, solution to DRO is xδ(S) =

a+b
2 .



Example 2 with W1

DRO: minx∈X supQ∈Pδ
EQ [c(x ,Z )] ,

Pδ = {Q ∈ P1(M) : inf
γ∈Γ(P0,Q)

∫
M×M

‖u − v‖dγ(u, v) ≤ δ}

Proposition (Anderson and P., 2021)

When c(x , z) = 1
2 x
2 − g(z)x and g is a strictly convex and non-negative

function of z then VRS(δ) > 0 when

ES [ (ḡ0(S)− ḡ) ‖∇g(z∗(S))‖] > 0

where z∗(S) = argmaxzi∈S {‖∇g(zi )‖}.



Example 1 with W2

DRO: minx∈X supQ∈Pδ
EQ

[
(x − Z )2

]
Pδ = {Q ∈ P2(M) : inf

γ∈Γ(P0,Q)

∫
M×M

‖u − v‖2dγ(u, v) ≤ δ2}

SupposeM = (−∞,∞). Then

xδ(S) =
1
N

N

∑
i=1

zi .

Thus βδ = β0, Vδ = V0 and VRS(δ) = 0.



Example 2 with total variation

DRO: minx∈X supQ∈Pδ
EQ

[
1
2 x
2 − Zx

]
Given a sample S = {z1, z2, ..., zN }

Pδ = {(q1, q2, ..., qN ) :
N

∑
i=1
|qi − pi | ≤ δ}.

DRO:minx maxq ∑i qi (
1
2 x
2 − zi x)

∑Ni=1
∣∣∣qi − 1

N

∣∣∣ < δ,

∑Ni=1 qi = 1, q ≥ 0.



Example 2 with total variation

Proposition (Anderson and P., 2021)

Suppose c(x , z) = 1
2 x
2 − zx with z > 0 almost surely, and sample

S = {z1, z2, ..., zN } and z0(S) = 1
N ∑Ni=1 zi . Then

VRS(δ) = (δ/2)cov(z0(S),R(S))−
(

δ2/8
)

ES [R(S)
2 ],

where R(S) = zM − zL. If the distribution of Z is symmetric about its
mean then the (δ/2) term is zero and VRS(δ) < 0 for all δ. If
cov(z0(S),R(S)) > 0 then VRS(δ) > 0 for small δ.



Total variation improvement with right skew

If F has a large right tail, z0(S) and zM − zL are both large for
samples with zM ≫ 0

This implies that z0(S) and zM − zL are positively correlated, so
cov(z0(S),R(S)) > 0.

Robustifying takes weight from high-price outlier zM and moves it to
zL, giving VRS(δ) > 0.



Example 1 with total variation

SO: min
x

EP[
1
2
(x − Z )2 ]

Proposition

Suppose sample S = {z1, z2, ..., zN } with order statistics zL and zM . If
δ > 1− 2

N then βδ = β0 = 0, and

VRS(δ) =
1
2

(
σ2

N
−ES [(

zL + zM
2

− µ)2 ]

)

Corollary

If δ > 1− 2
N then VRS(δ) > 0 for uniform Z.



Ronald Fisher 1922

Suppose one takes 100 samples of a U(0, 1) random variable, and orders the
sample so

z1 ≤ z2 ≤ . . . ≤ z100.
The variance of the sample average is σ2

N ≈ 8.33× 10−4. The variance of the
first order statistic z1 (and of the Nth order statistic z100) is

N
(N+1)2(N+2)

≈ 10−4. So (assuming z1 and z100 are independent) the

variance of u1+u1002 ≈ 10−4
2 ≈ σ2

16N

VRS(δ) ≈ 15σ2

32N
> 0

(Source: Wikipedia)



Happy Birthday!

Clare College, March 17, 2019
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