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Infinite transportation problems
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p(u, v)du = u(u), ueM,
p(u,v)dv =v(v), vew,
p(u,v) >0, (u,v) e M x N.
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Transport U(0, 1) mass to U(0,1) when ¢(u,v) = uv(u—v)



Gaspard Monge and Leonid Kantorovich
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Wasserstein distance (a.k.a. Kantorovich Metric)

Suppose (M, d) is a Polish metric space. For p > 1 let Pp(M) denote
the collection of all probability measures u on M with finite pth moment.
For distributions IP,Q € P, (M) let I'(IP, Q) denote the set of joint
distributions with marginals I and Q. For p > 1 the pth Wasserstein
distance under the metric d is defined as:

WP(P,Q) = ( inf /Mx/\/l d(u, v)Pdy(u, v))fl’

Y€r(P,Q)



Example: total variation

M ={z,20,23,...,zy}, and d is the discrete metric
0, u=yv
d(uv) = { 1, otherwise

In this case IP and Q can be represented by probability distributions p, g
supported on M, and Wl(]P,Q) reduces to the total-variation distance

YN g — pil-



When M C R" and d(u, v) = ||u — v|| (the standard Euclidean norm)
then
wl P, = inf / u—vl|dy(u,v),
(P,Q) LN Y [u = vi[dy(u,v)
1

WQ(IP,Q) = < inf )/MxM |u— v\|2d'y(u, v)> ’

yer(P,Q



Stochastic optimization

@ Stochastic optimization problem with random cost function ¢(x, Z)
SO: mXin]E]p[c(x,Z)].

@ Expectations are taken over the random variable Z, with instance
z € R™, and probability distribution IP.

@ We call SO the true problem.

Definition

Given any x, ¢(x) = Ep[c(x, Z)] is the out-of-sample cost of x
evaluated with the true probability distribution IP.

@ Optimal solution of SO is denoted x*, optimal objective value
C* = e(x*) = Eplc(x*, Z)].



Resrict attention to convex quadratic programs

SO: min Eplc(x, 2)]

Let c(x,2z) = 3x"H(z)x — v(z) Tx where H(z) is positive definite a.s.

2(x) = ox Bp[H)x — Ep[v] x

o Optimal solution x* = Ep[H] ' Ep|v]
@ Optimal objective function value is

(x) = —3Eplv] EplH] 'Ep[v].



Sample average approximation

@ The decision maker does not know I, but has a sample,
S={z1,2,...zy}, of Z.

@ Write Py for the sample distribution which has probability % at
each of the sample pointsin S = {z1, 2, ..., zy }

o Approximate the value of Ep[c(x, Z)] by Ep,[c(x, Z)] and solve
the sample average approximation problem

SAA:  minyex Ep,[c(x, Z)].

o Let xp(S) denote the solution of SAA (depends on sample S).

e ¢(xp(S)) = Ep[c(x0(S), Z)] is the out-of-sample cost of xq(S)
evaluated with the true probability distribution IP. Note: this
depends on sample S.



Post decision disappointment

@ SAA solution value is biased low
Es [Ep, [c(x0(5), 2)]] < e(x)
e Out of sample cost of x(S) is never lower than ¢(x*), so
e(x) < e(x(9))

@ Promise of SAA solution is not delivered when evaluated out of
sample.

e Consider some robustification x5(S) of SAA solution.

Definition

Value of robustification, VRS(6) = Es[e(x(S)) — e(x5(S))].

e When is VRS(J) > 07



Distributionally robust optimization (DRO)

[Scarf, 1958, Zackova, 1966, Pflug and Wozabal, 2007, ...]

e Distributionally robust optimization (DRO) solves the following
problem
DRO:  minyex supgep, Eq [c(x, Z)],
for some choice of Pjs being a ball of size § centered at Py.
e We write x5(S) for the optimal solution of DRO and write
Cs(S) = e(x5(S)) (the out-of-sample cost of x5(S)).
@ When § = 0 we have Ps = {IPy}, so then C5(S) = ¢(x(S)).
@ We define Ps for 6 > 0 using a Wasserstein metric.

@ If 4 chosen large enough then true distribution IP lies in Py with high
probability (Fournier & Guillin, 2015). So, with high probability,

Eq- [¢(x5(5), 2)] = Ep [c(x5(S), 2)] = €(x5(S)-



Out-of-sample performance for quadratics

Suppose C(x,z) = x " H(z)x?> — v(z) Tx. Let s = Eg[x5(S)].

Definition
The cost bias of x5(S) is

The variation of x5(S) is

Vs = Es[(x(S) —x5) "E[H] (x5(S) — %)]

v

If C(x,z) = %XTH(Z)X2 — v(z)Tx then

VRS(8) = %(vo — Vs) — (Bs — Bo).




(x —2)?

N

c(x,z) =

c(x,z) = $x° — g(2)x




Example 1 with W1

DRO:  minycx supgep,; Eq [%(X - Z)2} ,

= : o inf —v|ldy(u,v) <4
Po=iQeP(M): _int [ o= vldy(ny) <o)

If M = (—c0,00) then supremum not attained: Q sends atoms to
infinity.
If M = |[a, b], then supremum attained: Q sends mass to a or b. For

6 > b — a, solution to DRO is x5(S) = 252,



Example 2 with W1

DRO:  minycx supgep, Eq [c(x, Z)],

fr . 1 —_ <
Pi=1QePUM): inf /MxM”“ vl|dy(u,v) < 5}

Proposition (Anderson and P., 2021)

When c(x,z) = 3x> — g(z)x and g is a strictly convex and non-negative
function of z then VRS(5) > 0 when

Es[(20(S) —2) Ve (z*(S))[] >0

where z*(5) = argmaxzes{||Ve(z)||}-




Example 1 with W2

DRO:  minycx supgep, Eq [(x — Z)?]
P = ePM:'f/ —v]dy(u,v) < &2
s=fQePM): it [ =Py <)
Suppose M = (—o0, ). Then

Thus Bs = Bo. Vs = Vo and VRS(6) = 0.



Example 2 with total variation

DRO:  minyex supgep, Eq [%X2 _ Zx}

Given a sample S = {z1, 2, ..., zy }
N
Ps={(q1. g2, ...an) : Y |ai — pi| < 3}
i=1

DRO:miny maxg ) ; CIi(%X2 — z;x)
Y ’q,' - %‘ <J,
YN, =1 g>0



Example 2 with total variation

Proposition (Anderson and P., 2021)

Suppose ¢(x,z) = %xz — zx with z > 0 almost surely, and sample

S={z1,2,...zy} and z3(S) = %Z,’-Vﬂ zj. Then
VRS(8) = (6/2)cov(zo(S), R(S)) — (52 /s) Es[R(S)?],

where R(S) = zp — z. If the distribution of Z is symmetric about its
mean then the (§/2) term is zero and VRS(8) < 0 for all 6. If
cov(zg(S), R(S)) > 0 then VRS(6) > 0 for small é.




Total variation improvement with right skew

o If F has a large right tail, z9(S) and zy; — z; are both large for
samples with zy; >> 0

7 Zm

Im "7

@ This implies that z3(S) and zy; — z; are positively correlated, so
cov(z(S), R(S)) > 0.

@ Robustifying takes weight from high-price outlier zy; and moves it to
z;, giving VRS(8) > 0.



Example 1 with total variation

50: mXinlE]p[% (x — 2)2]

Suppose sample S = {z1, z, ..., zy } with order statistics z; and zp;. If
6>1— % then Bs = Bo =0, and

2 Z V4
VRS(6) = % (7\/ ~ Es( “; L —#)2])

V.

Corollary

If6 > 1— 2 then VRS(5) > 0 for uniform Z.




Ronald Fisher 1922

Suppose one takes 100 samples of a U(0, 1) random variable, and orders the
sample so
z1 <2 < ... < Z100-

2
The variance of the sample average is ‘TW% 8.33 x 10~%. The variance of the
first order statistic z; (and of the Nth order statistic z1qg) is

m ~107%. So (assuming z; and z1gqg are independent) the

4 2
variance of w ~ 102 ~ %

(Source: Wikipedia)
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Clare College, March 17, 2019




References

@ Anderson, E.J. and Philpott, A.B., Improving sample average
approximation using distributional robustness, INFORMS Journal on
Optimization, 2021.

@ Esfahani, P.M. and Kuhn, D., 2017. Data-driven distributionally robust
optimization using the Wasserstein metric: Performance guarantees and
tractable reformulations. Mathematical Programming, pp.1-52.

@ Fisher, R.A., 1922. On the mathematical foundations of theoretical
statistics. Philosophical transactions of the Royal Society of London.
Series A, 222(594-604), pp.309-368.

@ Fournier, N. and Guillin, A., 2015. On the rate of convergence in
Wasserstein distance of the empirical measure. Probability Theory and
Related Fields, 162(3), pp.707-738.

@ Gotoh, J.Y., Kim, M.J. and Lim, A.E., Calibration of distributionally

robust empirical optimization models. arXiv preprint arXiv:1711.06565,
2017.



References

@ Gotoh, J.Y., Kim, M.J. and Lim, A.E., Robust empirical optimization is
almost the same as mean—variance optimization. Operations Research
Letters, 2018.

@ Kuhn, D., Esfahani, P.M., Nguyen, V.A. and Shafieezadeh-Abadeh, S.,
2019. Wasserstein distributionally robust optimization: Theory and
applications in machine learning. In Operations research & management
science in the age of analytics (pp. 130-166). INFORMS.

@ Pflug, G.C., 2001. Scenario tree generation for multiperiod financial
optimization by optimal discretization. Mathematical Programming,
89(2), pp.251-271.

@ Pflug, G. and Wozabal, D., Ambiguity in portfolio selection. Quantitative
Finance 7(4) 435-442, 2007.

@ Scarf, H., A min-max solution of an inventory problem, in Studies in the
Mathematical Theory of Inventory and Production, 201-9, 1958.

@ Zstkova, J., On minimax solutions of stochastic linear programming
problems. Casopis pro péstovani matematiky, 91(4), 423-430, 1966.



