On Hydrogen and Electricity Security of Supply

Andy Philpott, Tony Downward, Connor Roulston, Harry Thurman

EPOC, University of Auckland

November 29, 2022

Security of supply

A water level gauge at Meridian's Lake Tekapo. Photo: Bernard Spragg

energy, technology and violent extremism. Twitter: @marcdaalder.

Marc Daalder is a senior political reporter based in Wellington who covers Covid-19, climate change,

Running dry: NZ works to

avert a winter energy crisis

WEEK IN REVIEW

FIRST PUBLISHED MAY 5, 2021 Updated May 9, 2021

RECOMMENDED READS

ACT MP makes misleading claim

Another dry winter (Newsroom: May 5, 2021).

Philpott (EPOC, University of Auckland)

Presentation at ORSNZ, 2022

Sar

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The NZ Battery Project

Feasibility update on \$4 billion Lake Onslow project expected next month

2:36 pm on 21 May 2022

The Energy Minister is expected to provide an update next month on whether a \$4 billion pumped hydro storage in Central Otago might be feasible.

The project was estimated to take four to five years to build. Photo: Shellie Evans 2014/Wikipedia

Lake Onslow is one option of NZ Battery Project (RNZ: May 21, 2022). Others are hydrogen, bioenergy, & geothermal

Philpott (EPOC, University of Auckland)

Presentation at ORSNZ, 2022

November 29, 2022 3 / 33

Southern Green Hydrogen

BUSINESS / ENERGY

Southland eyed for New Zealand's largest green hydrogen plant Share this 🔽 🚺 🖸 🙆 🛅

Nona Pelletler, Senior Business Reporter

New Zealand could become the world's first large-scale producer of green hydrogen if Contact Energy and Meridian Energy's plans pan out.

Southern Green Hydrogen announced by Meridian and Contact (RNZ, July 22, 2021).

Philpott (EPOC, University of Auckland)

Presentation at ORSN7, 2022

Sac

イロト イポト イヨト イヨト 二日

Demand response as a battery

- Increase flexible industrial production (e.g. H₂) that uses electricity.
- Increase renewable electricity supply (wind and solar) for extra industrial demand.
- \bullet When electricity is cheap, produce H_2 .
- When electricity is expensive, shut down (e.g. when wind is not blowing and reservoirs not full)
 - ▶ hard to do for inflexible plant (e.g. aluminium smelter).
 - easy for flexible plant (e.g. electrolysers making H_2).

글 눈 옷 글 눈 드 글.

5 / 33

Summary

Background (1)

2 How to model the H2 option

JADE 3

The experiments (4)

Conclusions 5

3

Summary

2 How to model the H2 option

Philpott (EPOC, University of Auckland)

3

< 🗇 🕨

-< ∃ >

Risk in energy-only electricity markets

- New Zealand has an energy-only electricity market.
- Generators invest to make money from selling electricity.
- In a perfectly competitive equilibrium they will invest to make zero risk-adjusted return.
- Risk for consumers comes from dry winters that gives high prices.
- Risk for generators comes from full reservoirs and windy or sunny periods that give low prices.
- If all risk of shortage is eliminated and all generation is renewable then prices collapse and generators divest until risk increases.
- If markets for trading risk are complete and risk measures are coherent then the investment equilibrium corresponds to an optimal social plan that maximizes risk-adjusted social benefit.

Sac

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

A social plan

• Find the optimal level of wind investment to minimize:

the annual risk-adjusted social cost of extra wind capacity + the risk-adjusted cost of energy supply with extra wind capacity

• This talk will value assets assuming a 10% social discount rate. (Results are indicative not prescriptive).

Wind costs

- A wind turbine costs about (USD)1.3 mill./MW¹
- Converts to (NZD) 2.33 mill./MW²
- Over 25 years at 10% discount rate this is (NZD) 233,596/MW p.a.

Annual wind turbine costs versus rated capacity (MW)


Philpott (EPOC, University of Auckland)

Presentation at ORSNZ, 2022

November 29, 2022 10

୬ < ୍ 10 / 33

Total cost of meeting demand with extra wind

Total cost per annum in 2020 with increasing wind investment (MW).

Sac

Summary

1 Background

2) How to model the H2 option

JADE

5 Conclusions

3

∃ ► < ∃ ►</p>

< 🗇 🕨 <

JADE = JuliA Doasa Environment

- JADE applies SDDP.jl (Dowson, Kapelevich, 2015-18) to NZ hydrothermal scheduling problem.
- Adopted by Electricity Authority, 2022.
- Given inflow W_t and cost c_t(s) of renewable energy shortfall s to meet demand d_t in week t, and reservoir storage x find releases of energy U_t from reservoirs to solve

$$V_t(x) = \mathbb{E}\left[\min_{0 \le U_t \le x + W_t} \left\{ c_t (d_t - U_t) + V_{t+1} (x - U_t + W_t) \right\} \right]$$

$$t = 1, 2, \dots, T,$$

$$V_{T+1}(x) = C(x) \text{ (known expected future cost at } T \text{ given } x)$$

$$= C(x) = C(x) \text{ (known expected future cost at } T \text{ given } x)$$

Physical electricity system

11 regions with approximate transmission system

DQC

Estimating regional demand

- Let $d_r(t)$ = demand in region r in period t (for all periods in 2020).
- Need to account for intra-regional losses.
- Historical electricity generation $g_r(t)$ and transmission $f_{rs}(t)$ between regions r and s is computed using vSPD and recorded.
- Set

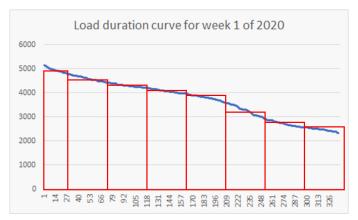
$$d_r(t) = g_r(t) + \sum_s f_{sr}(t) - \sum_s f_{rs}(t)$$

Wind modelling

- Existing regional wind capacity k_r for region r. ($\sum_r k_r = 690$ MW) •
- Existing wind generation $w_r(t)$ for 2020 gives wind generation in region r in period t.
- Wind capacity factor $\alpha_r(t) = w_r(t)/k_r$.
- Consented wind farms give maximum capacity increases M_r in each region.
- Increase of M MW of wind capacity gives capacity increase $m_r = M * M_r / \sum_r M_r$
- Wind expected in period t is $(m_r + k_r) \alpha_r(t)$, which is subtracted from demand $d_r(t)$.


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Load duration curves

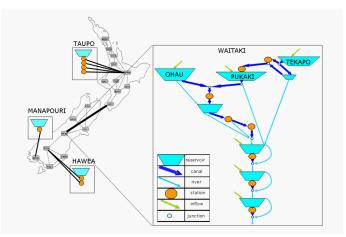

• Demand minus wind generation in region r in period t is

$$N_r(t) = d_r(t) - (m_r + k_r) \alpha_r(t)$$

• National (net) demand in period t is $\sum_r N_r(t)$. For each week in the year we can construct a national load duration curve for net demand.

Load blocks

Eight load blocks (B1,B2,...,B8) are identified based on ordering $\sum_r N_r(t)$ from peak to offpeak using a lot sizing model.


Demand response

- Assume all thermal plant is shut (Huntly, Whirinaki and Taranaki gas generation).
- Assume Tiwai Point smelter is shut.
- Assume EMI demand response from market (at > \$530/MWh).
- Suppose H_2 plant in Southland has constant demand 850 MW.
- $\bullet~H_2$ load is shed in any load block up to 850 MW when price exceeds \$150/MWh.
- Maximum total load shed in a week = 850*168 = 142.8 GWh.

HydrogenPlantSl	Power	H2P	all	all	all	power	absolute	850	0
HydrogenPlantSl	Tranche	H2P	all	all	all	energy	absolute	142.8	150

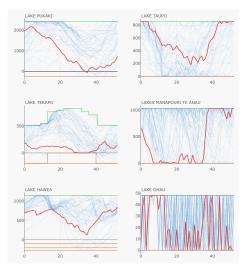
Demand response for H2 plant

Inflows and reservoirs

JADE default is six major reservoirs with stagewise independent inflows sampled from historical record.

						_	~ ~ ~ ~
Philpott	(EPOC, University of Auckland)	Presentation at ORSNZ, 2022	Nove	ember	29, 2022		20 / 33

イロト イロト イモト イモト・モ


JADE over infinite horizon

- JADE solves stochastic dynamic program over 52 weeks of 2020.
- Infinite horizon mode assumes discount factor $\beta < 1$.
- Solve recursion

whe

$$V_t(x) = \mathbb{E}[\min_{0 \le U_t \le x + W_t} \{f(d_t - U_t) + V_{t+1}(x - U_t + W_t)\}]$$

re $V_{53}(x) = \beta V_1(x).$

Storage trajectories from JADE

Simulated storage trajectories for optimal policy with inflows 1970-2020. Dry year 2012 shown in red.

Philpott (EPOC, University of Auckland)

Presentation at ORSNZ, 2022

November 29, 2022 22 / 33

< A

Sac

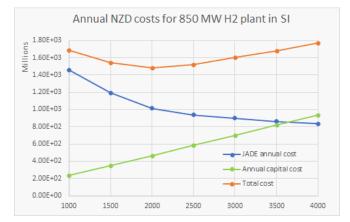
Summary

1 Background

2 How to model the H2 option

3 JADE

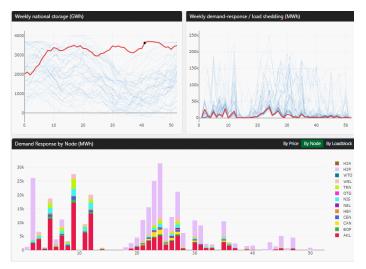
4 The experiments


5 Conclusions

3

< 🗇 🕨

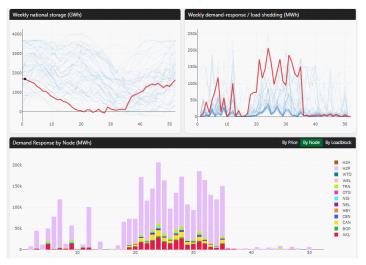
∃ ► < ∃ ►</p>


H2 plant in Southland replaces Tiwai smelter

Total cost per annum with increasing wind investment (MW).

Sac

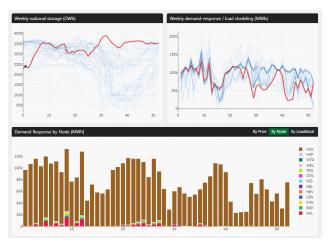
2000 MW wind solution (wet year)



Results from simulating optimal policy with 1998 inflows.

1 November 29, 2022 25 / 33

< 17 ▶


2000 MW wind solution (dry year)

Results from simulating optimal policy with 2012 inflows.

Sac

H2 plant in Auckland with 2500 MW wind (wet year)

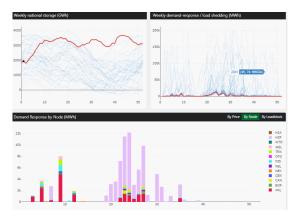
Results from simulating optimal policy with 1998 inflows.

H2 plant in Auckland with 2500 MW wind (dry year)

Results from simulating optimal policy with 2012 inflows.

28 / 33

H2 plant in SI: gas plant at HLY (e3p+peaker)



Total cost per annum with 554MW thermal at Huntly and increasing wind investment (MW).

Philpott (EPOC, University of Auckland)	Presentation at ORSNZ, 2022	November 29, 2022	29 / 33


= nar

H2 plant in SI: e3p+peaker at HLY (wet year)

Results from simulating optimal policy with 1998 inflows.

H2 plant in SI: e3p+peaker at HLY (dry year)

Results from simulating optimal policy with 2012 inflows.

Summary

1 Background

2 How to model the H2 option

3 JADE

4 The experiments

3

∃ ► < ∃ ►</p>

-

Observations

(\$M p.a)	SGH	AKL	HLY
1998	244	769	141
2012	1273	785	861
Average	624	974	426
Wind	467	584	233
Total	1091	1558	659

Annual costs (million NZD) (average over 1970-2020).

- Optimal location of H2 plant must account for transmission constraints (future work to include transmission expansion).
- Wind expansion to socially optimal level does not eliminate shortages.
- Costs reduce (at 2020 carbon prices) if some thermal generation is allowed to manage peaks.