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New Zealand welcomes first big battery
to national grid

New Zealand’s transition to a renewable energy future has taken a significant step
forward with the nation’s first grid-scale battery energy storage project now offering
injectable reserves to the electricity market for the first time.
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Consent granted for large solar
power station at Ruakaka in
Northland
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Contact to develop a grid-scale 100 MW battery in
Auckland

« Contact's first renewable project in Auckland to start immediately.

« Tesla selected as battery energy ge system supplier, the first Megapack 2 XL
project in New Zealand.

« The battery system will discharge stored energy at a split second to significantly
improve security of energy supply to New Zealanders.

« The project will be operational by March 2026.

Contact Energy (Contact) has answered calls for more energy storage
by contracting with Tesla to build a 100-megawatt (MW) battery,
which will provide enough electricity to meet peak demand over
winter for 44,000 homes for over two hours.
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As solar capacity grows, duck curves are getting deeper in California

California's duck curve is getting deeper /_-\
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Figure: CAISO Duck curves [California Independent System Operator]



Self dispatch versus central dispatch

Self dispatch

» Battery forecasts/models prices and solves an optimization
problem to maximize revenue from storage.

» System operator forecasts exogenous battery operation as part
of net demand.

Central dispatch

» Battery provides supply/demand curve defining what battery
will sell /buy as price increases.

» System operator co-optimizes SPD using endogenous battery
operation



Supply curves are state dependent

» The marginal cost of battery charge/discharge in period t
depends on the current level of charge, and (random) prices in
t+1,t+2,....

» Optimal price-taking offer can be computed by each battery
using stochastic dynamic programming.

» Predispatch SPD:

» solves deterministic problem with forecast demand and
offersin t +1,t+ 2, ... and publishes prices and dispatch.

» Batteries use deterministic prices and state of charge to
update offers.

» Make this more efficient using agent decision rules (ADRs)



Agent decision rules (ADRs)

» An agent decision rule (ADR) is a mapping from any known
parameter of the stage t problem, and a's state (storage) at end
of t, to an energy offer in period t.

» An agent Bellman function (ABF) for agent a in period t is a
function W!(y) that expresses the expected future benefit to a
of being in state y at the end of period t.

» We can define an ADR for battery a using observed price 77(t)
and its initial storage y, and ABF W!. Choose discharge u and
charge v so as to:

max,, 7t(t)(u—v)+ Wi(y,—u+nv)
st. 0<y,—u+nv<E



Single-node electricty dispatch with ABFs

Given ABFs for battery agents B, and state of charge y(t —1):

ADR(t):min Y caxa(t) + Lz(t) — ) Wi(ya)

acg aclB

st Yo x(t)+ Y us(t) — Y va(t) +z(t) = d(t),

acg aeB aeB

x;(t) € Xs(xa(t—1)), ac€g,
(Ya(t)v Ua(t)v Va(t)) c ya()/a(t - 1))1 aeb,
z(t) € [0,d(t)].



New dispatch process with ADRs

» Generator agents provide system operator with marginal costs.

» Battery agent a provides system operator with ADR defined by
increasing concave ABF W/.

» System operator solves single-stage problem ADR(t) and
computes dispatch and system marginal price $7t(t)/MWh.

» Generator is paid 7t(t) per MWh
» Battery is paid 7t(t)(charge - discharge).



Remarks

» ADR(t) is a deterministic convex optimization problem
(assuming no unit commitment).

» This means price 77(t) gives budget balance for system operator
(i.e. revenue adequacy).

» Price 7t(t) defines a perfectly competitive equilibrium for stage
t, so agents recover costs.

» Does dispatch problem ADR(t) yield social optimum?

» If all agents and system operator agree on probability
distribution of future demand then ADRs can recover social
optimum.



How agents might choose an ADR

» SDDP defines (approximate) system Bellman function C*(y) at
stage t (using cuts).

» Suppose given y(t — 1) the optimal dispatch with C*(y) yields
state of charge y*(t).

» Given y(t — 1) agent a makes a forecast y* of y*(t).
» Propose that each agent a € B offers ADR:

Wi(y;) = —C(y. 75)).



ADRs can be system optimal

Theorem

Suppose given y(t — 1), that each agent a makes a perfect forecast
yt of y*(t) (for example they might all solve SDDP model with the
same shared data). Then

1. the solution for ADR(t) using Y, Wi(y,) is optimal for EP(t)
with C*(y);

2. prices from EP(t) and the solution to ADR(t) defines a
perfectly competitive equilibrium where all agents optimize
profit in period t at system prices accounting for their ADR.



Example: one battery, one ramping generator
x(t) = dispatch of generator in period t;

X = dispatch of generator in period t — 1;
y(t) = storage in battery at end of period t;
y = storage in battery at end of period t — 1;
u = discharge from battery in period t;

v = charge input to battery in period t;

X(x) = {x|0<x<gx—x<p,x—x<0},

Vi) = {ruv)[0<y<E0<u<r0<v<s,
y=y—u+nv}



An example: one battery, one ramping generator

Assume T = 24, ¢;(x) = 70.0x, 0 = oo. Other parameters are as
follows.

g=700 |E=300 | n7n=038
r=100 |s=10.0 |p =100
L =500.0|x%=35.0y°=40

Table: Parameter values for example




Example demand
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Figure: Example values of d(t) for t = 1,2,...,24. We add stagewise independent random
noise chosen from -4.0, -2.0, 0.0, 2.0, 4.0 with equal probabilty



Experiment with imperfect forecast

» In battery example, suppose we solve SDDP, and simulate over
many sample paths. This gives expected cost =57,148 + 21.

» Let (X', y') denote average values of generation and average
values of battery storage at each stage.

» We then simulate the solution of ADR(t) using the system
Bellman function approximation:

Vi(x) + Wi(y)

» Simulated policy gives 58,082 £ 76. Some social optimality is
lost since (X%, ') # (x*(t), y*(t)) (varying with each sample
path).



“To do” list

» Dispatch must also meet many side constraints (e.g. reserve).
» Agents can hold a portfolio of technologies.

» Agents have different views of the future.

» Agents have different risk preferences.

» Agents may be strategic: i.e. not reveal their true future costs.



The End

Any questions?

a.philpott@auckland.ac.nz

For the paper go to https://www.epoc.org.nz/papers/ADRv2. pdf
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