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Figure: Rotohiko BSS [PV Magazine: March 13, 2024.]



Figure: Ruakaka BSS [RNZne: March 13, 2024.]





Figure: CAISO Duck curves [California Independent System Operator]



Self dispatch versus central dispatch

Self dispatch

▶ Battery forecasts/models prices and solves an optimization
problem to maximize revenue from storage.

▶ System operator forecasts exogenous battery operation as part
of net demand.

Central dispatch

▶ Battery provides supply/demand curve defining what battery
will sell/buy as price increases.

▶ System operator co-optimizes SPD using endogenous battery
operation



Supply curves are state dependent

▶ The marginal cost of battery charge/discharge in period t
depends on the current level of charge, and (random) prices in
t + 1, t + 2, . . ..

▶ Optimal price-taking offer can be computed by each battery
using stochastic dynamic programming.

▶ Predispatch SPD:

▶ solves deterministic problem with forecast demand and
offers in t + 1, t + 2, . . . and publishes prices and dispatch.

▶ Batteries use deterministic prices and state of charge to
update offers.

▶ Make this more efficient using agent decision rules (ADRs)



Agent decision rules (ADRs)

▶ An agent decision rule (ADR) is a mapping from any known
parameter of the stage t problem, and a’s state (storage) at end
of t, to an energy offer in period t.

▶ An agent Bellman function (ABF) for agent a in period t is a
function W t

a (y) that expresses the expected future benefit to a
of being in state y at the end of period t.

▶ We can define an ADR for battery a using observed price π(t)
and its initial storage ya and ABF W t

a . Choose discharge u and
charge v so as to:

maxu,v π(t)(u − v) +W t
a (ya − u + ηv)

s.t. 0 ≤ ya − u + ηv ≤ Ea



Single-node electricty dispatch with ABFs

Given ABFs for battery agents B, and state of charge y(t − 1):

ADR(t): min ∑
a∈G

caxa(t) + Lz(t)− ∑
a∈B

W t
a (ya)

s.t. ∑
a∈G

xa(t) + ∑
a∈B

ua(t)− ∑
a∈B

va(t) + z(t) = d(t), [π(t)]

xa(t) ∈ Xa(xa(t − 1)), a ∈ G,

(ya(t), ua(t), va(t)) ∈ Ya(ya(t − 1)), a ∈ B,

z(t) ∈ [0, d(t)].



New dispatch process with ADRs

▶ Generator agents provide system operator with marginal costs.

▶ Battery agent a provides system operator with ADR defined by
increasing concave ABF W t

a .

▶ System operator solves single-stage problem ADR(t) and
computes dispatch and system marginal price $π(t)/MWh.

▶ Generator is paid π(t) per MWh

▶ Battery is paid π(t)(charge - discharge).



Remarks

▶ ADR(t) is a deterministic convex optimization problem
(assuming no unit commitment).

▶ This means price π(t) gives budget balance for system operator
(i.e. revenue adequacy).

▶ Price π(t) defines a perfectly competitive equilibrium for stage
t, so agents recover costs.

▶ Does dispatch problem ADR(t) yield social optimum?

▶ If all agents and system operator agree on probability
distribution of future demand then ADRs can recover social
optimum.



How agents might choose an ADR

▶ SDDP defines (approximate) system Bellman function C t(y) at
stage t (using cuts).

▶ Suppose given y(t − 1) the optimal dispatch with C t(y) yields
state of charge y ∗(t).

▶ Given y(t − 1) agent a makes a forecast ỹ t of y ∗(t).

▶ Propose that each agent a ∈ B offers ADR:

W̃ t
a (yj) = −C t(yj , ỹ

t
−j).



ADRs can be system optimal

Theorem

Suppose given y(t − 1), that each agent a makes a perfect forecast
ỹ t of y ∗(t) (for example they might all solve SDDP model with the
same shared data). Then

1. the solution for ADR(t) using ∑a W̃
t
a (ya) is optimal for EP(t)

with C t(y);

2. prices from EP(t) and the solution to ADR(t) defines a
perfectly competitive equilibrium where all agents optimize
profit in period t at system prices accounting for their ADR.



Example: one battery, one ramping generator
x(t) = dispatch of generator in period t;

x̄ = dispatch of generator in period t − 1;

y(t) = storage in battery at end of period t;

ȳ = storage in battery at end of period t − 1;

u = discharge from battery in period t;

v = charge input to battery in period t;

X (x̄) = {x | 0 ≤ x ≤ q, x − x̄i ≤ ρi , x̄ − x ≤ σi} ,

Y(ȳ) = {(y , u, v)|0 ≤ y ≤ E , 0 ≤ u ≤ r , 0 ≤ v ≤ s,

y = ȳ − u + ηv}.



An example: one battery, one ramping generator

Assume T = 24, ci(x) = 70.0x , σ = ∞. Other parameters are as
follows.

q = 70.0 E = 30.0 η = 0.8

r = 10.0 s = 10.0 ρ = 10.0

L = 500.0 x0 = 35.0 y 0 = 4.0

Table: Parameter values for example



Example demand
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Figure: Example values of d(t) for t = 1, 2, . . . , 24. We add stagewise independent random
noise chosen from -4.0, -2.0, 0.0, 2.0, 4.0 with equal probabilty



Experiment with imperfect forecast

▶ In battery example, suppose we solve SDDP, and simulate over
many sample paths. This gives expected cost =57,148 ± 21.

▶ Let (x̃ t , ỹ t) denote average values of generation and average
values of battery storage at each stage.

▶ We then simulate the solution of ADR(t) using the system
Bellman function approximation:

Ṽ t(x) + W̃ t(y)

▶ Simulated policy gives 58,082 ± 76. Some social optimality is
lost since (x̃ t , ỹ t) ̸= (x∗(t), y ∗(t)) (varying with each sample
path).



“To do” list

▶ Dispatch must also meet many side constraints (e.g. reserve).

▶ Agents can hold a portfolio of technologies.

▶ Agents have different views of the future.

▶ Agents have different risk preferences.

▶ Agents may be strategic: i.e. not reveal their true future costs.



The End

Any questions?

a.philpott@auckland.ac.nz

For the paper go to https://www.epoc.org.nz/papers/ADRv2.pdf
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