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Figure: CAISO battery boom [New Atlanticist, May 2024]



Figure: CAISO Duck curves [California Independent System Operator]



Electricity dispatch and pricing

▶ System operators solve a multiperiod dispatch problem to
schedule generators and batteries and compute prices.

▶ Needs forecasts of future renewable generation (wind and
solar).

▶ Better to use a scenario tree? [Wong & Fuller, 2007;
Pritchard et al, 2010]

▶ Requires market participants to agree on scenarios . . .

▶ . . . and gives intractable problems [Shapiro & Nemirovski,
2005] and potentially inconsistent prices. [Hogan, 2020]

▶ What about using SDDP?
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Economic dispatch example
xi(t) = dispatch of generator i ∈ G in period t;

x̄i = dispatch of generator i in period t − 1;

yj(t) = storage in battery j ∈ B at end of period t;

ȳj = storage in battery j at end of period t − 1;

uj = discharge from battery j in period t;

vj = charge input to battery j in period t;

Xi(x̄) = {x | 0 ≤ x ≤ qi , x − x̄i ≤ ρi , x̄i − x ≤ σi} ,

Yj(ȳ) = {(y , u, v)|0 ≤ y ≤ Ej , 0 ≤ u ≤ rj , 0 ≤ v ≤ sj ,

y = ȳj − u + ηjv}.



Economic dispatch and pricing: period t

EP(t): min ∑
i∈G

ci(xi(t)) + Lz(t)

s.t. ∑
i∈G

xi(t) + ∑
j∈B

uj(t)− ∑
j∈B

vj(t) + z(t) = d(t) + w(t), [π(t)]

xi(t) ∈ Xi(x(t − 1)), i ∈ G,

(yj(t), uj(t), vj(t)) ∈ Yj(y(t − 1)), j ∈ B,

w(t) ≥ 0, z(t) ∈ [0, d(t)].

[Here ci(x) is a convex increasing function of x ; L is VOLL.]



An example: one battery, one generator

Assume T = 24, ci(x) = 70.0x , σ = ∞. Other parameters are as
follows.

q = 70.0 E = 30.0 η = 0.8

r = 10.0 s = 10.0 ρ = 10.0

L = 500.0 x0 = 35.0 y 0 = 4.0

Table: Parameter values for example



Example demand
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Figure: Example values of d(t) for t = 1, 2, . . . , 24. We add stagewise independent random
noise chosen from -4.0, -2.0, 0.0, 2.0, 4.0 with equal probabilty



Uncertain net demand modeled by a scenario tree.

Figure: A scenario tree. We write n− for the parent of node n, for example, 8− = 3. SDDP
requires (some form of) stagewise independence.



Eeconomic dispatch and pricing in a scenario tree

SP: min ∑
n∈N

P(n)

(
∑
i∈G

ci(xi(n)) + Lz(n)

)

s.t. ∑
i∈G

xi(n) + ∑
j∈B

uj(n)− ∑
j∈B

vj(n) + z(n) = d(n) + w(n),

[P(n)π(n)], n ∈ N ,

xi(1) = x0, xi(n) ∈ Xi(x(n−)), ∀i , n ∈ N \ {1},

yj(1) = y0, (yj(n), uj(n), vj(n)) ∈ Yj(y(n−)), ∀j , n ∈ N \ {1},

w(n) ≥ 0, z(n) ∈ [0, d(n)], n ∈ N .



Optimal dispatch gives energy prices π

▶ Dual variables on demand constraints are P(n)π(n) that
decouple SP into agent problems. [Ferris & P., 2022]

GP(i): max ∑
n∈N

P(n)(π(n)xi(n)− ci(xi(n)))

s.t. xi(1) = x0, xi(n) ∈ Xi(x(n−)), ∀i , n,

CO: max ∑n∈N P(n)(π(n)− L)z(n)
s.t. 0 ≤ z(n) ≤ d(n), ∀n.

BP(j): max ∑
n∈N

P(n)π(n)(uj(n)− vj(n))

s.t. yj(1) = y0, (yj(n), uj(n), vj(n)) ∈ Yj(y(n−)), ∀j , n.



Drawbacks of scenario trees

▶ The scenario tree reflects the system operator view of the future
and is not a consensus of market participant views, who prefer
to “put their money where their mouths are”;

▶ Even with a shared view, the future will (almost surely) not be
a scenario in the tree;

▶ Solving scenario-based problems is impossible at scale;

▶ With stagewise independent or Markov noise we can use SDDP
[SDDP.jl: Dowson and Kapelevich, 2021];

▶ Prices π from SDDP models are not stagewise independent, so
agent problems require scenario trees.[Barty et al, 2010]
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Example problem with stagewise independent demand

Figure: Example of simulated demand realizations (5 equiprobable outcomes per stage).



SDDP.jl solution

Figure: 100 simulations of optimal SDDP policy (100 cuts). LB=57126 UB=57148 ± 21



Plot of prices from optimal policy
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Energy Prices (100 simulations)

Figure: System marginal prices from 100 simulations of optimal stochastic policy computed
using SDDP.jl.



System stage problem and expected future cost

EP(t): min ∑
i∈G

ci(xi(t)) + Lz(t)+C t(x , y)

s.t. ∑
i∈G

xi(t) + ∑
j∈B

uj(t)− ∑
j∈B

vj(t) + z(t) = d(t) + w(t),

xi(t) ∈ Xi(x(t − 1)), i ∈ G,

(yj(t), uj(t), vj(t)) ∈ Yj(y(t − 1)), j ∈ B,

w(t) ≥ 0, z(t) ∈ [0, d(t)].
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Expected future cost provided by agents

ADR(t): min ∑
i∈G

ci(xi(t)) + Lz(t)+ ∑
i∈G

G t
i (xi) + ∑

j∈B
B t
j (yj)

s.t. ∑
i∈G

xi(t) + ∑
j∈B

uj(t)− ∑
j∈B

vj(t) + z(t) = d(t) + w(t),

xi(t) ∈ Xi(x(t − 1)), i ∈ G,

(yj(t), uj(t), vj(t)) ∈ Yj(y(t − 1)), j ∈ B,

w(t) ≥ 0, z(t) ∈ [0, d(t)].



Agent decision rules

▶ System operator collects future cost functions G t
i (xi) and

B t
j (yj) from agents and uses them in place of C t(x , y).

▶ This is an example of an agent decision rule (ADR).

▶ An ADR for agent a in period t is a function of any parameter
of the stage t problem, and a’s dispatch (storage) at end of t.

▶ An ADR for agent a expresses the expected future cost to a of
being in a given state at the end of each period.



Dispatch process for generators and batteries

▶ Generator agents i ∈ G provide system operator with cost
ci(x)).

▶ Generator agents i ∈ G provide system operator with ADR
defined by G t

i .

▶ Battery agents j ∈ B provide system operator with ADR
defined by B t

j .

▶ System operator solves single-stage problem ADR(t) and
computes dispatch and system marginal price π(t).

▶ Generator i is paid π(t)xi(t).

▶ Battery j is paid π(t)(uj(t)− vj(t)).



Remarks

▶ ADR(t) is a deterministic convex optimization problem
(assuming no unit commitment).

▶ This means price π(t) gives budget balance for system operator
(i.e. revenue adequacy).

▶ Price π(t) defines a perfectly competitive equilibrium for stage
t, so agents recover costs.

▶ Does dispatch problem ADR(t) yield social optimum?

▶ If all agents and system operator agree on probability
distribution of future demand then ADRs can recover social
optimum.



How agents might choose an ADR

▶ SDDP defines (approximate) Bellman function C t(x , y) at
stage t (using cuts).

▶ Suppose given (x(t − 1), y(t − 1)) the optimal dispatch with
C t(x , y) yields actions (x∗(t), y ∗(t)).

▶ Given (x(t − 1), y(t − 1)) agent a makes a forecast (x̃ t , ỹ t) of
(x∗(t), y ∗(t)).

▶ Propose that agent i ∈ G and j ∈ B offer ADRs:

G̃ t
i (xi) = C t(xi , x̃

t
−i , ỹ

t),

B̃ t
j (yj) = C t(x̃ t , yj , ỹ

t
−j).



ADRs can be system optimal

Theorem

Suppose given (x(t − 1), y(t − 1)), that each agent a makes a
perfect forecast (x̃ t , ỹ t) of (x∗(t), y ∗(t)) (for example they might
all solve SDDP model with the same shared data). Then

1. the solution for ADR(t) using ∑i∈G G̃
t
i (xi) + ∑j∈B B̃

t
j (yj) is

optimal for EP(t) with C t(x , y);

2. prices from EP(t) and the solution to ADR(t) defines a
perfectly competitive equilibrium where all agents optimize
profit in period t at system prices accounting for their ADR.



Experiment with imperfect forecast

▶ In battery example, suppose we solve SDDP, and simulate over
many sample paths. This gives expected cost =57,148 ± 21.

▶ Let (x̃ t , ỹ t) denote average values of generation and average
values of battery storage at each stage.

▶ We then simulate the solution of ADR(t) using the
approximation

∑
i∈G

G̃ t
i (xi) + ∑

j∈B
B̃ t
j (yj).

▶ Simulated policy gives 58,082 ± 76. Some social optimality is
lost since (x̃ t , ỹ t) ̸= (x∗(t), y ∗(t)) (varying with each sample
path).



“To do” list

▶ Unit commitment requires binary variables.

▶ Dispatch must also meet many side constraints (e.g. reserve)

▶ Agents can hold a portfolio of technologies.

▶ Agents have different views of the future.

▶ Agents have different risk preferences.

▶ Agents may be strategic: i.e. not reveal their true future costs.



The End

Happy 75th Birthday Alexander!



Agents are strategic

Figure: ADR from Cournot game [Crampes & Moreaux, 2001]
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