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Introduction

Modelling approaches for electricity investment

@ System dynamics with market agents (ENZ).

o specify policy settings (taxes, incentives, constraints)
and then simulate agent’s actions.

e actions can anticipate future outcomes of a scenario
(e.g. to estimate NPV).

e actions typically ignore competitive response.

e misrepresent the social cost of meeting objectives.

@ Social investment planning (GEM)

o optimize social welfare using a (stochastic) mixed
integer program.

e gives minimum-cost plan to meet social objectives
e.g. 100% renewable electricity.

e not consistent with market forces; plans appear to
ignore competition between agents.



Introduction

Modelling approaches for electricity investment

@ How to combine planning and market?

If markets are competitive, convex and complete, and agents
optimize using similar coherent risk measures, then partial
equilibrium of the electricty market dynamic investment game is
the same as the solution to a risk averse dynamic stochastic
optimization problem (social planning problem).

@ Open question: how to deal with an incomplete
market for risk.
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Competitive and complete market

o Where, when, how big to build capacity?
o Multistage stochastic optimization.

o Uncertainty at different time scales.

o Multi-horizon scenario trees.
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https://reganbaucke.github.io/JuDGE.jl/
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JuDGE

o Problem Class / Decomposition
o Requirements

o Installation

o Stochastic Knapsack Example
o Limitations

o Bugs

Tutorials

AP Reference

JuDGE.jl

JUDGE stands for: Julia Decomposition for Generalized Expansion. Functionally, it is a solver which leverages the
syntax of the JuMP modelling language to solve a particular class of capacity expansion problems.

For more details see our working paper: JUDGE jl: a Julia package for optimizing capacity expansion.

Problem Class / Decomposition

JUDGE solves multi-stage stochastic integer ing problems using D: ition. The user
must specify a tree that represents the uncertainty of the problem, and at each node define a subproblem that can
be alinear or integer program. Further, the expansion variables which link the subproblems must be declared.

JUDGE automatically generates a master problem and performs column generation to converge to an optimal
solution.

JuDGE = Julia Decomposition for Generalized Expansion
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An example problem: Emerald

Emerald: Planning for a net-zero carbon economy

@ Increase capacity of NZ electricity system to meet
increased demand by 2050.

e Scenario tree models states of the world with changes in
EV demand, industrial load, government policy e.g.
emission prices.

e Each subproblem computes optimal operation of
electricity system in state of the world.

e State of the world lasts 4,5,10,10,10 years (giving 5
stages) and involves hydro inflow and wind uncertainty.

e Example model has 2 branches per stage giving 31 nodes
(16 scenarios).



An example problem: Emerald

Multihorizon scenario tree

low demand

high demand Choose capital investments
to make in each node n,
and minimize operating

costs for ten years

high

2021 2025 2030 2040 2050

Multihorizon scenario tree for electricity expansion model. In each node
of the tree we solve a two-stage operational subproblem given
investments in capacity up to this time. The scenario tree for this
subproblem is suppressed.
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Emerald representation of demand uncertainty
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The stage problem in Emerald

Subproblem n is a MIP

SP(n):

min
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Subproblem n is a MIP
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The stage problem in Emerald

Subproblem n is a MIP

SP(n):

min

S.t.

ININ A

m IV IA IA

(o xT) =  x7) —
+Y,E[Z(t, w)]

Yper H(b) Ty Cuyx(t, w, b)
+ Yoper H(B)Rq(t, w, b),
Uy +Xk+Uk —X;Vk,
u,(t,w,b)z,

Vi (t, w) Yper H(b) 2k

+S(t — 1,w) = s(t,w),

n

d(t,w,b),

Yk ye(t,w, b) + q(t, w, b),
0,

{0,1}K.




The stage problem in Emerald
Subproblem n is a MIP

SP(n): min (rrf xTy —(my , x) —u,
+ 2 E[Z(t, w)]
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Some results from Emerald
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Other features of JuDGE

Other features of JuDGE

e Open source using JuMP.
e Can model time lags from investment to deployment.
e Can model risk .

e Can use binary variables to model discrete investments
(computes MIP solution using branch-and-price).



Other features of JuDGE

Modeling risk

e JuDGE can model social planner risk aversion over the
scenario tree using the end-of-horizon risk measure

p(Z) = (1— AN)E[Z] + ACVaR;_,[Z]

where Z(n), n € £, measures accumulated losses along
each path from the root node to n € £. CVaR is the
conditional value at risk of the loss distribution (the
expected value of the worst 1000% of losses.

e JuDGE can also model agent risk aversion within a node

problem e.g. for investment and operation over next ten
years.

e We can make the risked positions of agents and planner
align if markets for risk are complete.



Other features of JuDGE
Incomplete markets for risk?

o Leader: Government sets taxes, regulations,
incentives

o Followers: Private investors respond with
investments in competitive risked equilibrium.

o Question: How bad can the equilibrium be? We
can compute the risked equilibrium for each
scenario-tree node using JuDGE.



Other features of JuDGE
Conclusion

o JuDGE package available for free at
https://github.com /reganbaucke/JuDGE.jl.

o Stochastic capacity expansion via decomposition
enables problems to be solved at realistic scale.

o We are developing better models for wind that
reflect time variation based on representative
days.



Other features of JuDGE
Conclusion

THE END
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Application: Planning for a net-zero carbon economy

Emissions budget levels

We recommend the Government set and meet the emissions budgets as outlined in the table below.
These emissions budgets are expressed using GWP,, values from the IPCC's Fifth Assessment Report
(AR5) for consistency with international obligations relating to Inventory reporting.

Emissions Emissions Emissions
budget1 budget 2 budget 3
2019 (2022-2025) (2026 -2030) (2031-2035)
i 290 MtCO.e 312 MtCO.e 253 MtCO.e
net (AR5) - : -
Annual
78.0 MtCO,e 72.4 MtCO,e/yr 62.4 MtCO.efyr 50.6 MtCO,e/yr
average

New Zealand CO, emission budgets (NZCCC May 31, 2021).
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Branch and price

In many instances the optimal solution to the LP relaxation of
the master problem has naturally binary solutions. When this
is not the case JuDGE can either:

@ stop generating columns, and solve the master problem as
a MIP, or

e perform a branch-and-price procedure that generates new
columns after branching on master variables.
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Investment lags

@ Investment in node n occurs by default after information
on state n is revealed.

e In practice, investment availability lags investment
decision /by at least J; stages.

o Use a set of m x m diagonal matrices L(h, n) where

| 1 ifnlags h by at least J;
L(h, n)i = { 0 otherwise

giving RMP constraint

—Zz >—ZL(h,n)xh+, neN.

JETn heP,

e JuDGE enables lags and investment durations to be
specified.
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@ A better model for dry years



A bett
How to represent dry years?

SP(n): min (o, xTy —(m, , x™) — u
+ L E[Z(t w)]

st Z(tw) = Taes H(B)L, Gons(t,w,b)
+ Lper H(b)Rq(t, w, b),

n

Z < U +Xk+Uk—X;Vk,
yi(t,w, b) < u(t w,b)z,
Yoee HD)yk(t,w, b) < vy (t, w) Xper H(b) 2k

+s(t—1,w) — s(t,w),

s(t,w) € [S(t)—46,5(t)+4],
q(t,w,b) < d(t,w,b),
d(t,w,b) < Y,y(t,w,b)+q(t,w,b),
z,y,9,5,S > 0,

xT,x= € {0,1}X.
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