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NZ-German platform for green
hydrogen integration
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- Does sector coupling matter?
- Are we getting the costs right?

@ % - Energy transitions and modelling gaps
- HINT Platform for Hydrogen Integration



Capacity expansion planning
Minimize total costs, subject to meeting demand

i Inputs ii Power system expansion tool iii Results

sizes and location of:
- storage (MW, MWh)
- generation

- transmission

renewables

Solar, wind, hydro
profiles (from meteorology, |:|:|

like reference or typical years)
(for each zone)

cost projections

Learning curves o £
@ =
%) 5 2
3
technical param.
Characteristic curves @
(PV or turbine) A
5 Haas, Cebulla, Nowak, Rahmann, Palma. A multi-service approach for planning the optimal mix of energy storage technologies..., Energy Management and UC@
Conversion 2018



Capacity expansion planning = strategy for growth
Example South America: optimal pathway of generation capacities

2500 5000

— 2000 — 4000

= =

g} z

> et

3 1500 2 3000

© ® Wind S B Wind

Q. -

S mCsP 'g l mCSP

o 1000 Solar PV o . Solar PV
2000

3 n mGas T o mGas

o (&)

- - m Hydro = = ® Hydro

o — B Coal 3 m Coal

— [ = oa oa

® 500 a 1000

[7,]

2025 2035 2045 2025 2035 2045
Year Year
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Strong need for storage
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More than just providing energy
Energy autonomy and power reserves, impact investment decisions

Batteries Q Pumped hydro @ Hydrogen@
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8 Haas, Cebulla, Nowak, Rahmann, Palma. A multi-service approach for planning the optimal mix of energy storage technologies..., Energy Management and Conversion 2018 UC@



Tools for expansion planning are inherently limited
=> Modelling gaps!
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Typical scope of energy system optimization tools
9 Cao, Haas, et al: “Bridging granularity gaps to decarbonize large- scale energy systems— The case of power system planning” Energy, Science and Engineering 2021 UC@



Does sector coupling
matter?



Tools for expansion planning are inherently limited
=> Modelling gaps!
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Does sector-coupling matter?
Inc. heat and transport = 4x generation
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13 Osorio-Aravena et al (inc. Haas and Breyer): Synergies of electrical and sectoral integration;: Analysing dgeo%ralphical multi-node scenarios with sector coupling UC@
variations for a transition towards a fully renewables-based energy system. Energy 2023



Does sector-coupling matter?

Also 4x storage!

14

Osorio-Aravena et al (inc. Haas and Breyer): Synergies of electrical and «
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Does sector-coupling matter?

>15 GW for electrolyzers!
(without export ambitions)
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Osorio-Aravena et al (inc. Haas and Breyer): Synergies of electrical and sectoral in
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Are we getting the
é% costs right?



Tools for expansion planning are inherently limited
=> Modelling gaps!
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We keep on underestimating the cost decline of clean tech
... misinforming decision makers
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Utility PV cost assumptions, revised down by 15%
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Utility PV cost assumptions

Projections for
2050
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20 Vatankhah Ghadim, Haas, Peer at el: How low can you go? Re-assessing cost projections for renewable technologies. To be submitted to Energy. UC@



Cost assumptions: most studies still overestimate costs
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What is the purpose of the cost projection analysis?
=> Inputs to NZ energy system modelling

o INPUTS e TOOL o OUTPUTS
Network > . —
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( Renewables )—‘

9( Timing )
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> { Operation )

(Technical parameters)—‘ ALLOWS THE SET UP OF OPTIMAL COMMODITIES
LINEAR OPTIMIZATION EXCHANGE & BALANCING
EFFICIENCIES & LIMITS MODELS WRITTEN IN GAMS STORAGE

22 UC@
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Tools for expansion planning are inherently limited
=> Modelling gaps!
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Scope of Research

Integrated multi sector energy modelling
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REMix Framework AZGAMS ‘#7
DLR

Renewable energy mix for a sustainable energy supply
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We use it to set up energy system optimization
models: bottom-up (explicitly modelling
different technologies) to be resolved on

a spatial and a temporal dimension

DLR, REMix framework: getting started (2023) UC@



REMix for New Zealand #7
Electricity Sector Modelling DLR
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DLR.de « Chart 28

REMix model overview

*  Main model language pgg GAMS

* Comprehensive energy system modelling framework

* Flexible spatial, temporal & technological scope

* Capacity expansions and dispatch of all infrastructures

* System integration of power, heat, gas, transport sectors

Active development

* Testing framework and merge approvals to ensure
stability from previous version developed over 10 years

* Development over the last two years

solar potential thermal energy electricity
C - th
Multi-activity converters (upper profile)  /methane
e Linear combinations turbine o
. L. solar field _—
e Partial and minimum loads —_—
M E-boiler

Multi-input multi-output activities
* Free definition of commodities and
accounting variables

O

thermal storage

Power grid
* LOPF power angles and Kirchhoff formulation
* Security constrained transmission expansion planning

Gas sector modelling
* Pipeline and storage repurposing for H,
* Hydrogen admixture for methane networks

System transformation pathways (\%éﬁ

Limited and perfect foresight )
« Carbon budgets (|H2 net. repurp. |
2030 2040 2050

MIP capacity expansion and unit commitment

Multi-criteria optimization

Resilience and outage modelling
* Rolling horizon with multiple outage events

Modelling to generate alternatives methods

HPC ready via PIPS-IPM++ link
* EMP reformulation for stochastic optimization
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Resiliency Modelling



Resilience

S
Pre-disturbance Post-restoration state
State of resilient state
Health
SHo
SHpd
to toe tee tr T Time

How FAST does resilience decline? How extensive is this state? How promptly does the grid recover?

How LOW does resilience drop?

30 M. Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D. Hatziargyriou, “Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems”, IEEE Transactions on UC@

Power Systems, vol. 32, no. 6, November 2017.



Resilience assessment

31

Phase 1 Phase 2 Phase 3

Fragility-
driven

Geographic Power system

rofiles analysis
P approach y
Hazard Vulnerability o
oL asessment of
characterization response
system components
Spatiotemporal threat * Time and hazard » Spatio-temporal impact .
modelling dependent failure assessment
probabilities
Empirical data and » Component and region
simulation of thousands  Fragility-based criticality assessment
scenarios assessment

Phase g4

Probabilistic

recovery

System
restoration

Operational and
infrastructure restoration
and recovery modelling

M. Panteli, D. N. Trakas , P. Mancarella, and N. D. Hatziargyriou, “Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies”, Proceedings of the IEEE,

vol. 105, no. 7, pp. 1202 1213, July 2017.

M. Panteli, P. Mancarella, C. Pickering, S. Wilkinson, and R. Dawson, “Power System Resilience to Extreme Weather: Fragility Modelling, Probabilistic Impact Assessment, and Adaptation

Measures”, IEEE Transactions on Power Systems, vol. 32, no. 5, September 2017.

M. Panteli, R. Moreno, A. Martinez Cesena and M. Pierluigi. (2022). Flexibility and Resilience in Future Low-Carbon Energy Systems.

UCe



Resilience: Phase 1 and 2
Earthquake Modelling

HAZUS Methodology

PGA

surface of a given point in the map

Intensity of the earthquake at the Fragility Curves

1 T —— —
InPGA = 6,36 + 1,76M — 2,73 In(R + 1,58 e%°8 M) + 0,00916 h 208"
E
Soe-
e
=3
M intensity magnitude in the Gutenberg-Richter scale ©04
S
R distance between the earthquake coordinates and the '©
i o2 ] , Hardened
location of each power system component [km] , } ambiguity
h interval
. . 0 =3 | 1 1 L 1 1 L
focal depth in the epicenter [km] 0 o2 o4 o6 o8 p 12 14 16 18

PGA

C. B. Crouse Ground-Motion Attenuation Equations for Earthquakes on the Cascadia Subduction Zone. Earthquake Spectra, May 1991, Vol. 7, No. 2, pp. 201-236.

32 Lagos, Tomas & Sacaan, Rafael & Navarro-Espinosa, Alejandro & Ordonez, Fernando & Rudnick, Hugh & Moreno, Rodrigo. (2017). Designing Resilient Power UC@
Networks Against Natural Hazards.



Resilience and REMix: Phase 3 and 4

REMix

4 R
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The Sequential Montecarlo Procedure for Resiliency Model
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Application: Earthquakes in Chile

“From Reliability to Resilience: Planning the Grid Against the extremes”

Results:
Optimal portfolio solutions for resilience enhancement for different budgets.

CEENS [GWHh]

42

40

38

36

34

32

30

Base case

HVDC link

Substations A.Jahuel, C.Navia

Budget

HVDC link
Substations A.Jahuel, C.Navia
Storage in Lagunas, Cumbre

@ The best possible insurance to the main system load center against the occurrence

Reliability Resilience
Rank Enhancement EENS [MWh]  Rank Enhancement CEENS [GWh]
1 L: HVDC link 348 1 L: HVDC link 38
2 L: Laberinto - Cumbre 392 2 Ss: C. Navia 43
3 L: Ciruelos - Pichirropulli 523 3 Ss: A. Jahuel 43
4 L: Cautin - Charrua 580 4 Ss: Charrua 44
5 L: Ciruelos - Cautin 617 5 Ss: Crucero 45
6 Ss: Crucero 696 6  L:Laberinto - Cumbre 46
7 Ss: C. Navia 696 7 L: Ciruelos - Cautin 46
8 Ss: A. Jahuel 696 8 L: Cautin - Charrua 46
9 Ss: Charrua 696 9 L:Ciruelos - Pichirropulli 46
10 Base case 696 10 Base case 46
of large earthquakes.
34

R. Moreno et al., "From Reliability to Resilience: Planning the Grid Against the Extremes," in IEEE Power and Energy Magazine, vol. 18, no. 4, pp. 41-53, July-Aug. UC@

2020, doi: 10.1109/MPE.2020.2985439.
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Bottoms up! Planning cities



Energy system optimisation for cities and industries

L
& FLEX|G|S-HZ Hydrogen Productiqf\ Potential
* GlS-based Urban Infrastructure #7 l‘ A ==

* open-source Building Land use Power

« high-resolution optimization of ‘
green hydrogen integration at
district and industry level

¢ calculate demand and generation

potential of renewables and H,
Linear
Electrical Generation and Consumption Optimisation *

Spatio-temporal demand and supply

6 Scenarios

H, integration: yes / no for:
* Reference - 2023

e Future-2030

e Future - 2050

— unamarny

Use-cases

LG

@ Operation

residential  process seasonal fertiliser
heating heat storage

36 Based on: Alhamwi et al., 2019, Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems UC@


https://github.com/FlexiGIS

@% Thinking beyond carbon



Evaluating the non-carbon trade-offs of NZ’s near-term

energy futures

2022 |
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Figure 3: Gross energy demand

(TWh, Accelerated Electrification)
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Policy commitments &
alternative energy pathways

RENEWABLE ENERGY STRATEGY

Impacts on:
 land

* water

* materials
* access

* equity

Newsroom; NZ MBIE UC@
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Upcoming conferences

2nd New Zealand Hydrogen Symposium

31Jan-2 Feb 2024, Wellington
Special session on “Hydrogen energy systems”

4% LA SDEWES Conference

Sustainable development of water energy systems
14 -17 Jan 2024, Vina del Mar
Special Session on “Integrated Energy Systems”

40

UCe
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