

Mai

NZ oporgy plan

PV yield Green farming systems Hadi Int. PhD PhD Haas/Brever Haas/Peer

NZ Chergy plan		
Rafaella	Pacific Islands	Green farming scenario
PhD	Akash	Sam
Haas/Peer	PhD	MSc
	Haas/Peer	Haas/Gallardo

Ranking Civil: 11th ARWU, 54th QS, 24th QS employers' reputation

SERG × serg.co.nz Sustainable Energy Research Group

Research

Energy systems optimization **Transitions pathways** Lifecycle assessments Planning for carbon negativity

Study

Master of Engineering in Renewable Energy Doctorate on Renewable Energy

> Always looking for outstanding PhD students. UC scholarships!

jannik.haas@canterbury.ac.nz Director of Programmes in Renewable Energy

EPOC Winter Workshop 2023, Auckland, New Zealand

Planning multi-sector energy systems: new models and insights for New Zealand

Authors: Haas, Canessa, Vatankhah, Ale, Peer.

Dr. –Ing. Jannik Haas | Senior Lecturer | Sustainable Systems Director of Postgraduate Programmes in Renewable Energy Civil and Natural Resources Engineering, University of Canterbury

NZ-German platform for green hydrogen integration

HINT: New Zealand-German platform for green hydrogen integration (System analysis/modelling)

UC-PIs: Rebecca Peer and Jannik Haas | Senior Lecturers | Sustainable Civil Systems | UC UC: Mehdi Keyvan-Ekbatani, Alan Wood, Tom Logan, Hamish Avery, Grant Read UA: Andy Philpott, Tony Downward Researchers: Rafaella, Akash, Stella, Hadi, Cong

DLR-PIs: Hans-Christian Gils/Wided Medjroudbi | Group leaders |Energy System Analysis | DLR DLR: Manuel Wetzel, Alaa Alhamwi

Board: Academics: Pierluigi Mancarella, Christian Breyer, Rodrigo Palma. Industry: Hiringa, FirstGas, Mercury, Genesis

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

- Energy transitions and modelling gaps

- Does sector coupling matter?
- Are we getting the costs right?
- HINT Platform for Hydrogen Integration

Capacity expansion planning Minimize total costs, subject to meeting demand

Capacity expansion planning = strategy for growth Example South America: optimal pathway of generation capacities

Strong need for storage

Cebulla, Haas, Eichmann, Nowak, Mancarella. How much Electrical Energy Storage do we need? A synthesis for the U.S., Europe, and Germany, Journal of Cleaner UC

More than just providing energy

Energy autonomy and power reserves, impact investment decisions

Tools for expansion planning are inherently limited => Modelling gaps!

Typical scope of energy system optimization tools

Does sector coupling matter?

Tools for expansion planning are inherently limited => Modelling gaps!

Typical scope of energy system optimization tools

Does sector-coupling matter? Inc. heat and transport = **4x** generation

Does sector-coupling matter?⁴⁰⁰⁰

Also 4x storage!

Does sector-coupling matter?

>15 GW for electrolyzers!
(without export ambitions)

Osorio-Aravena et al (inc. Haas and Breyer): Synergies of electrical and sectoral in variations fo

Are we getting the costs right?

Tools for expansion planning are inherently limited => Modelling gaps!

Typical scope of energy system optimization tools

We keep on underestimating the cost decline of clean tech ... misinforming decision makers

Utility PV cost assumptions, revised down by 15%

Utility PV cost assumptions

Cost assumptions: most studies still overestimate costs

What is the purpose of the cost projection analysis? => Inputs to NZ energy system modelling

HINT NZ-German platform for Hydrogen Integration

Tools for expansion planning are inherently limited => Modelling gaps!

Typical scope of energy system optimization tools

Scope of Research

TYPICAL SCOPE OF REMIX MODEL

REMix Framework

<u>Ren</u>ewable <u>energy</u> <u>mix</u> for a sustainable energy supply

We use it to set up **energy system optimization models**: bottom-up (explicitly modelling different technologies) to be resolved on a **spatial** and a **temporal** dimension

REMix for New Zealand

Electricity Sector Modelling

REMix model overview

- Main model language G A M S
- Comprehensive energy system modelling framework
- Flexible spatial, temporal & technological scope
- Capacity expansions and dispatch of all infrastructures
- System integration of power, heat, gas, transport sectors

Active development

- Testing framework and merge approvals to ensure stability from previous version developed over 10 years
- Development over the last two years

Multi-activity converters

- Linear combinations
- Partial and minimum loads

Multi-input multi-output activities

• Free definition of commodities and accounting variables

solar potential thermal energy electricity (upper profile) / methane solar field <u>E-boiler</u> es ies and thermal storage

Power grid

- LOPF power angles and Kirchhoff formulation
- Security constrained transmission expansion planning

Gas sector modelling

- Pipeline and storage repurposing for H₂
- Hydrogen admixture for methane networks

System transformation pathways

- Limited and perfect foresight
- Carbon budgets

MIP capacity expansion and unit commitment

Multi-criteria optimization

Resilience and outage modelling

• Rolling horizon with multiple outage events

Modelling to generate alternatives methods

HPC ready via PIPS-IPM++ link

• EMP reformulation for stochastic optimization

Resiliency Modelling

Resilience

³⁰ M. Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D. Hatziargyriou, "Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems", IEEE Transactions on UC

Resilience assessment

31

M. Panteli, D. N. Trakas, P. Mancarella, and N. D. Hatziargyriou, "Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies", Proceedings of the IEEE, vol. 105, no. 7, pp. 1202 1213, July 2017.

M. Panteli, P. Mancarella, C. Pickering, S. Wilkinson, and R. Dawson, "Power System Resilience to Extreme Weather: Fragility Modelling, Probabilistic Impact Assessment, and Adaptation Measures", IEEE Transactions on Power Systems, vol. 32, no. 5, September 2017.

M. Panteli, R. Moreno, A. Martinez Cesena and M. Pierluigi. (2022). Flexibility and Resilience in Future Low-Carbon Energy Systems.

Resilience: Phase 1 and 2

Earthquake Modelling HAZUS Methodology

PGA

Intensity of the earthquake at the surface of a given point in the map

 $\ln PGA = 6,36 + 1,76M - 2,73\ln(R + 1,58 e^{0,608M}) + 0,00916h$

intensity magnitude in the Gutenberg-Richter scale
 R distance between the earthquake coordinates and the location of each power system component [km]

h focal depth in the epicenter [km]

C. B. Crouse Ground-Motion Attenuation Equations for Earthquakes on the Cascadia Subduction Zone. Earthquake Spectra, May 1991, Vol. 7, No. 2, pp. 201-236.

32 Lagos, Tomas & Sacaan, Rafael & Navarro-Espinosa, Alejandro & Ordonez, Fernando & Rudnick, Hugh & Moreno, Rodrigo. (2017). Designing Resilient Power Networks Against Natural Hazards.

Resilience and REMix: Phase 3 and 4

The Sequential Montecarlo Procedure for Resiliency Model

Application: Earthquakes in Chile

"From Reliability to Resilience: Planning the Grid Against the extremes"

Results: Optimal portfolio solutions for resilience enhancement for different budgets.

The **best possible insurance to the main system load center** against the occurrence of large earthquakes.

Bottoms up! Planning cities

Energy system optimisation for cities and industries

FLEXIGIS-H2

- GIS-based
- open-source
- high-resolution optimization of green hydrogen integration at district and industry level
- calculate demand and generation potential of renewables and H₂

6 Scenarios

- H₂ integration: **yes / no** for:
- Reference 2023
- Future 2030
- Future 2050

Use-cases

Hydrogen Production Potential

Thinking beyond carbon

Evaluating the non-carbon trade-offs of NZ's near-term energy futures

Policy commitments & alternative energy pathways

RENEWABLE ENERGY STRATEGY

Impacts on:

- land
- water
- materials
- access
- equity

Upcoming conferences

2nd New Zealand Hydrogen Symposium

31 Jan-2 Feb 2024, Wellington Special session on "Hydrogen energy systems"

4th LA SDEWES Conference

Sustainable development of water energy systems 14 -17 Jan 2024, Vina del Mar Special Session on "Integrated Energy Systems"

Mai

NZ on orgy plan

PV yield Green farming systems Hadi Int. PhD PhD Haas/Brever Haas/Peer

NZ Chergy plan		
Rafaella	Pacific Islands	Green farming scenario
PhD	Akash	Sam
Haas/Peer	PhD	MSc
	Haas/Peer	Haas/Gallardo

Ranking Civil: 11th ARWU, 54th QS, 24th QS employers' reputation

SERG × serg.co.nz Sustainable Energy Research Group

Research

Energy systems optimization **Transitions pathways** Lifecycle assessments Planning for carbon negativity

Study

Master of Engineering in Renewable Energy Doctorate on Renewable Energy

> Always looking for outstanding PhD students. UC scholarships!

jannik.haas@canterbury.ac.nz Director of Programmes in Renewable Energy