EMERALD: a green GEM

Andy Philpott

Joint work with Anthony Downward and Regan Baucke

Electric Power Optimization Centre
University of Auckland
WWW.epoc.org.nz

EPOC Winter Workshop, Auckland, August 28, 2023.



What is EMERALD?

- EMERALD is EPOC's stochastic version of the Electricity
Authority GAMS package GEM.



What is EMERALD?

- EMERALD is EPOC's stochastic version of the Electricity
Authority GAMS package GEM.

— used to study the effect of New Zealand carbon policy on
optimal investment in generation capacity over a 30 year
planning horizon with future uncertainty.



What is EMERALD?

- EMERALD is EPOC's stochastic version of the Electricity
Authority GAMS package GEM.

— used to study the effect of New Zealand carbon policy on
optimal investment in generation capacity over a 30 year
planning horizon with future uncertainty.

— applies the JuDGE.jl Julia package to solve a multistage
stochastic program in a scenario tree.



What is EMERALD?

- EMERALD is EPOC's stochastic version of the Electricity
Authority GAMS package GEM.

— used to study the effect of New Zealand carbon policy on
optimal investment in generation capacity over a 30 year
planning horizon with future uncertainty.

— applies the JuDGE.jl Julia package to solve a multistage
stochastic program in a scenario tree.

— JuDGE visualizations enable one to explore the optimal
expansion plan.



What is EMERALD?

- EMERALD is EPOC's stochastic version of the Electricity
Authority GAMS package GEM.

— used to study the effect of New Zealand carbon policy on
optimal investment in generation capacity over a 30 year
planning horizon with future uncertainty.

— applies the JuDGE.jl Julia package to solve a multistage
stochastic program in a scenario tree.

— JuDGE visualizations enable one to explore the optimal
expansion plan.

— This talk presents a summary and some results of EMERALD.
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Multi-horizon planning

low demand

high demand Choose capital investments

to make in node n, and minimize

high operating costs for ten years

2021 2025 2030 2040 2050

Capacity-expansion decisions over longer time scale (5 years or 10
years) result in lower operational costs, or higher revenue in the
future.



Multi-horizon scenario trees

low demand

Operating model is a
— stochastic program at

/O a finer time scale.
~o

high demand

high

2021 2025 2030 2040 2050

Operational decisions with short-term uncertainty optimized by a
stochastic program.
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JuDGEl

https://github.com/EPOC-NZ/JuDGE. j1

JuDGE stands for Julia Decomposition for Generalized Expansion.).

— allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

— can apply end-of-horizon risk-measures in objective function and/or the
constraints; and

— outputs an interactive view of the results over the scenario tree, enabling decision
makers to explore the optimal expansion plan.
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JuDGE modelling framework
To apply JuDGE we require...

a tree with corresponding data and probabilities for each node;
— a subproblem defined as a JuMP model for each node in the tree; and

expansion (and/or shutdown) decisions and costs;

a choice of solver for master and subproblem.
JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.?

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.



JuDGE modelling framework
To apply JuDGE we require...

a tree with corresponding data and probabilities for each node;
— a subproblem defined as a JuMP model for each node in the tree; and

expansion (and/or shutdown) decisions and costs;

a choice of solver for master and subproblem.
JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.?

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.



JuDGE modelling framework
To apply JuDGE we require...

a tree with corresponding data and probabilities for each node;
— a subproblem defined as a JuMP model for each node in the tree; and

expansion (and/or shutdown) decisions and costs;

a choice of solver for master and subproblem.
JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.?

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.



JuDGE modelling framework
To apply JuDGE we require...

a tree with corresponding data and probabilities for each node;
— a subproblem defined as a JuMP model for each node in the tree; and

expansion (and/or shutdown) decisions and costs;

a choice of solver for master and subproblem.
JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.?

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.



JuDGE modelling framework
To apply JuDGE we require...

a tree with corresponding data and probabilities for each node;
— a subproblem defined as a JuMP model for each node in the tree; and

expansion (and/or shutdown) decisions and costs;

a choice of solver for master and subproblem.
JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.?

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.



JuDGE modelling framework
To apply JuDGE we require...

a tree with corresponding data and probabilities for each node;
— a subproblem defined as a JuMP model for each node in the tree; and

expansion (and/or shutdown) decisions and costs;

a choice of solver for master and subproblem.
JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.?

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.



JuDGE modelling framework
To apply JuDGE we require...

a tree with corresponding data and probabilities for each node;
— a subproblem defined as a JuMP model for each node in the tree; and

expansion (and/or shutdown) decisions and costs;

a choice of solver for master and subproblem.
JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.?

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.



QOutline

EMERALD demonstration
The New Zealand model
Demonstration

Results



The New Zealand model

Expansions and shutdowns

1 1024 2047
- —

Optimize capacity expansion in response
to uncertainty represented by a scenario
tree.

Model is a risk-averse central-planning
model minimizing discounted disbenefit
Z summed from 2021-2050.

Risk is modelled using a convex combina-
tion of expected value and average value
at risk, so Risk(A, &) is

(1—A)E[Z] + AAVaR,_,[Z]

2047-node scenario tree.
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The New Zealand model

Defining the subproblems

Sets:
— seasons t € T;

— load blocks b € B, t € T;
— hydrological years h € H;
— technologies k € K.
Variables:
— Xx  capacity to build for technology k;
— gf" generation from technology k in load block b, with hydrological year h.

Parameters:
- db demand in load block b;
- Uy initial capacity of technology k;

- Uk maximum capacity increment of each new technology k;

- 9£ is the capacity factor for technology k, in load block b.



Medium-term Operational Model

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

min Z Z Ap Z Oh Z (ck+Tek)gfh,

teT beB: heH kel

where Ay is the number of hours corresponding to load block b;
ph is the probability of hydrological year h;
Ck is the marginal cost of technology k;
ex gives the emissions factor of technology k;
T is the carbon tax.
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Medium-term operations

Subproblem constraints

Load balance:
Y g"=d’ VbeB heH,

kek
Generation capacity:

0< gl <0P(ux+xcUs) VbeByteT heH keK,

Stored hydro generation:

Y gopo XA =pf VheH,teT,
beB:

Expansions:
xx€00,1], VkeK,ie{l,...,N}.



EMERALD demonstration

EMERALD case study uses...

— Three regions (NI, HAY, SI).

— Four seasons with 10 load blocks each.

— 16 load growth scenarios.

— 13 historical years model seasonal hydrological inflows.

— Data based on two-stage model of NZ system.3

3Ferris & Philpott, 100% renewable electricity with storage (2019) http://www.epoc.org.nz.
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EMERALD input data

Demand and carbon price scenarios are related

» Annual total energy demand increases from

» Electric vehicles;

» Industrial load;

» Consumer load;

> Tiwau (or replacement).

» NZ CCC CO,-e budgets in target years are assumed.
» CO,-e budgets affect carbon prices.
» Carbon prices affect fossil fuels and electricity prices.

» Electric vehicle demand = f(gasoline price,electricity price).
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EMERALD input data

Scenario tree for demand and carbon price

mytree, data = tree_with data(myscenariotree.csv)

n,p,EVIWh, industryTWh, consumerTWh,TiwauTWh, carbon
1,-,0.1,8.525,27.727,5.475,50
11,1,0.1389,10.750025,32.16332,5.475,50
12,1,0.1389,11.50875,29.168804,5.475,50
111,11,0.55,12.276,35.49056,5.475,200
112,11,0.55,11.227425,28.55881,5.475,200
121,12,0.55,13.14555,32.191047,5.475,200
122,12,0.55,12.028775,25.897018,5.475,200
1111,111,5,15.8565,39.566429,5.475,500
1121,112,5,14.50955,31.802869,5.475,500
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JuDGE.visualize tree(mytree, data)



Scenario tree
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Running EMERALD

Solving and producing output

JuDGE . solve(model ,termination=Termination(reltol=0.001))
resolve_subproblems (model)

solution = JuDGE.solution to dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,
custom=custom_plots)



Running EMERALD

Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)

solution = JuDGE.solution to_dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,
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EMERALD results
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Models for optimal planning

1. Computable general equilibrium models (e.g. C-PLAN );
2. Agent simulation models (e.g. ENZ);

3. Deterministic planning models (e.g. GEM);

4. Stochastic, risk-averse planning models (e.g. EMERALD);



Models for optimal planning

o R b=

Computable general equilibrium models (e.g. C-PLAN );
Agent simulation models (e.g. ENZ);

Deterministic planning models (e.g. GEM);

Stochastic, risk-averse planning models (e.g. EMERALD);

Do models (2), (3), (4) yield dynamic investment (partial)
equilibrium?



Dynamic investment equilibrium by backward induction

V,(x,111) = max{f(u)
+0.5V,(x+u,1111) + 0.5 V,(x+u,1112) }.<. \ (X 1111)
e V,(x,1112)

/ \/ V,(x,1121)

® V (x,1122)

V,(x,1211)

\ / <° V,(x,1212)
\.<o V,(x,1221)

) ® V (x,1222)



Dynamic investment equilibrium = EMERALD

» Optimal risk-averse plan from EMERALD matches partial
equilibrium when risk measures are coherent and risk-trading
instruments are available.*

» Each agent in EMERALD has their own coherent risk measure.
This corresponds to a nested risk measure with single-stage risk
sets that vary with node.

» What model of social risk model should we use in EMERALD?
JuDGE uses an end-of-horizon risk measure.
» NOTE: the intersection of agent risk sets define a nested risk

measure for the social planner that might not be an
end-of-horizon measure.

4Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022.



The End

JuDGE. j1 Julia Library downloadable from

https://github.com/EPOC-NZ/JuDGE. j1

My contact: a.philpott@auckland.ac.nz
Technical questions to:  a.downward@auckland.ac.nz
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