EMERALD: a green GEM

Andy Philpott

Joint work with Anthony Downward and Regan Baucke

Electric Power Optimization Centre University of Auckland www.epoc.org.nz

EPOC Winter Workshop, Auckland, August 28, 2023.

- EMERALD is EPOC's stochastic version of the Electricity Authority GAMS package GEM.

- EMERALD is EPOC's stochastic version of the Electricity Authority GAMS package GEM.
- used to study the effect of New Zealand carbon policy on optimal investment in generation capacity over a 30 year planning horizon with future uncertainty.

- EMERALD is EPOC's stochastic version of the Electricity Authority GAMS package GEM.
- used to study the effect of New Zealand carbon policy on optimal investment in generation capacity over a 30 year planning horizon with future uncertainty.
- applies the JuDGE.jl Julia package to solve a multistage stochastic program in a scenario tree.

- EMERALD is EPOC's stochastic version of the Electricity Authority GAMS package GEM.
- used to study the effect of New Zealand carbon policy on optimal investment in generation capacity over a 30 year planning horizon with future uncertainty.
- applies the JuDGE.jl Julia package to solve a multistage stochastic program in a scenario tree.
- JuDGE visualizations enable one to explore the optimal expansion plan.

- EMERALD is EPOC's stochastic version of the Electricity Authority GAMS package GEM.
- used to study the effect of New Zealand carbon policy on optimal investment in generation capacity over a 30 year planning horizon with future uncertainty.
- applies the JuDGE.jl Julia package to solve a multistage stochastic program in a scenario tree.
- JuDGE visualizations enable one to explore the optimal expansion plan.
- This talk presents a summary and some results of EMERALD.

Outline

Multi-horizon modelling and JuDGE

Multi-horizon stochastic programming and capacity planning The JuDGE package

EMERALD demonstration

The New Zealand model

Demonstration

Results

Central planning versus commercial investment

Outline

Multi-horizon modelling and JuDGE

Multi-horizon stochastic programming and capacity planning The JuDGE package

EMERALD demonstration

The New Zealand model

Demonstration

Results

Central planning versus commercial investment

Multi-horizon planning

Capacity-expansion decisions over longer time scale (5 years or 10 years) result in lower operational costs, or higher revenue in the future.

Multi-horizon scenario trees

Operational decisions with short-term uncertainty optimized by a stochastic program.

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

- allows users to easily implement multi-horizon optimization models using the JuMP modelling language;
- can apply end-of-horizon risk-measures in objective function and/or the constraints; and
- outputs an interactive view of the results over the scenario tree, enabling decision makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

- allows users to easily implement multi-horizon optimization models using the JuMP modelling language;
- can apply end-of-horizon risk-measures in objective function and/or the constraints; and
- outputs an interactive view of the results over the scenario tree, enabling decision makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

- allows users to easily implement multi-horizon optimization models using the JuMP modelling language;
- can apply end-of-horizon risk-measures in objective function and/or the constraints; and
- outputs an interactive view of the results over the scenario tree, enabling decision makers to explore the optimal expansion plan.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{2}\,$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

²Singh, P. & Wood, *Operations Research, 2009*.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{2}\,$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

²Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{2}\,$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

²Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{2}\,$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

²Singh, P. & Wood, Operations Research, 2009.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{2}\,$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

²Singh, P. & Wood, *Operations Research, 2009*.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{2}\,$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

²Singh, P. & Wood, *Operations Research, 2009*.

To apply JuDGE we require...

- a tree with corresponding data and probabilities for each node;
- a subproblem defined as a JuMP model for each node in the tree; and
- expansion (and/or shutdown) decisions and costs;
- a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies Dantzig-Wolfe decomposition. $^{2}\,$

The LP relaxation of the restricted master problem is typically solved with an interior point method, and the subproblems are solved as mixed-integer programs.

²Singh, P. & Wood, Operations Research, 2009.

Outline

Multi-horizon modelling and JuDGE

Multi-horizon stochastic programming and capacity planning The JuDGE package

EMERALD demonstration

The New Zealand model Demonstration Results

Central planning versus commercial investment

Expansions and shutdowns

Optimize capacity expansion in response to uncertainty represented by a scenario tree.

Model is a risk-averse central-planning model minimizing discounted disbenefit Z summed from 2021-2050.

Risk is modelled using a convex combination of expected value and average value at risk, so $Risk(\lambda, \alpha)$ is

$$(1-\lambda)\mathbb{E}[Z] + \lambda AVaR_{1-\alpha}[Z]$$

2047-node scenario tree.

Expansions and shutdowns

Optimize capacity expansion in response to uncertainty represented by a scenario tree.

Model is a risk-averse central-planning model minimizing discounted disbenefit Z summed from 2021-2050.

Risk is modelled using a convex combination of expected value and average value at risk, so $Risk(\lambda, \alpha)$ is

$$(1-\lambda)\mathbb{E}[Z] + \lambda AVaR_{1-\alpha}[Z]$$

2047-node scenario tree.

Expansions and shutdowns

Optimize capacity expansion in response to uncertainty represented by a scenario tree.

Model is a risk-averse central-planning model minimizing discounted disbenefit Z summed from 2021-2050.

Risk is modelled using a convex combination of expected value and average value at risk, so $Risk(\lambda, \alpha)$ is

 $(1-\lambda)\mathbb{E}[Z] + \lambda AV_{a}R_{1-\alpha}[Z]$

2047-node scenario tree.

Defining the subproblems

Sets:

- seasons $t \in \mathcal{T}$;
- load blocks $b \in \mathcal{B}_t$, $t \in \mathcal{T}$;
- hydrological years $h \in \mathcal{H}$;
- technologies $k \in \mathcal{K}$.

Defining the subproblems

Sets:

- seasons $t \in \mathcal{T}$;
- load blocks $b \in \mathcal{B}_t$, $t \in \mathcal{T}$;
- hydrological years $h \in \mathcal{H}$;
- technologies $k \in \mathcal{K}$.

Variables:

- $-x_k$ capacity to build for technology k;
- $-g_k^{bh}$ generation from technology k in load block b, with hydrological year h.

Defining the subproblems

Sets:

- seasons $t \in \mathcal{T}$;
- load blocks $b \in \mathcal{B}_t$, $t \in \mathcal{T}$;
- hydrological years $h \in \mathcal{H}$;
- technologies $k \in \mathcal{K}$.

Variables:

- $-x_k$ capacity to build for technology k;
- $-g_k^{bh}$ generation from technology k in load block b, with hydrological year h.

Parameters:

- d^b demand in load block *b*;
- u_k initial capacity of technology k;
- U_k maximum capacity increment of each new technology k;
- $-\theta_k^b$ is the capacity factor for technology k, in load block b.

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

min
$$\sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh}$$
,

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h;

 c_k is the marginal cost of technology k;

 e_k gives the emissions factor of technology k;

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

min
$$\sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh}$$
,

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h;

 c_k is the marginal cost of technology k;

 e_k gives the emissions factor of technology k;

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

min
$$\sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh}$$
,

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h;

 c_k is the marginal cost of technology k;

 e_k gives the emissions factor of technology k;

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

min
$$\sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh}$$
,

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h;

 c_k is the marginal cost of technology k;

 e_k gives the emissions factor of technology k;

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

$$\min \quad \sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh},$$

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h; c_k is the marginal cost of technology k; e_k gives the emissions factor of technology k; τ is the carbon tax.

Cost of investments over the tree:

min
$$\sum_{n\in\mathcal{N}}\phi_n\sum_{k\in\mathcal{K}}C_kx_k$$
,

Objective Functions

Subproblem at node *n* minimizes the operational costs of the electricity system:

min
$$\sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh}$$
,

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h; c_k is the marginal cost of technology k; e_k gives the emissions factor of technology k; τ is the carbon tax.

Cost of investments over the tree:

$$\min \quad \sum_{n \in \mathcal{N}} \phi_n \sum_{k \in \mathcal{K}} C_k x_k,$$

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

min
$$\sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh}$$
,

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h; c_k is the marginal cost of technology k; e_k gives the emissions factor of technology k; τ is the carbon tax.

Cost of investments over the tree:

min
$$\sum_{n\in\mathcal{N}}\phi_n\sum_{k\in\mathcal{K}}C_kx_k,$$

Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

$$\min \quad \sum_{t \in \mathcal{T}} \sum_{b \in \mathcal{B}_t} \Delta_b \sum_{h \in \mathcal{H}} \rho_h \sum_{k \in \mathcal{K}} (c_k + \tau e_k) g_k^{bh},$$

where Δ_b is the number of hours corresponding to load block *b*;

 ρ_h is the probability of hydrological year h; c_k is the marginal cost of technology k; e_k gives the emissions factor of technology k; τ is the carbon tax.

Cost of investments over the tree:

min
$$\sum_{n\in\mathcal{N}}\phi_n\sum_{k\in\mathcal{K}}C_k\mathbf{x}_k$$

Medium-term operations

Subproblem constraints

Load balance:

$$\sum_{k\in\mathcal{K}}g_k^{bh}=d^b,\quad\forall b\in\mathcal{B},h\in\mathcal{H},$$

Generation capacity:

$$0 \leq g_k^{bh} \leq \theta_k^b(u_k + x_k U_k) \quad \forall b \in \mathcal{B}_t, t \in \mathcal{T}, h \in \mathcal{H}, k \in \mathcal{K},$$

Stored hydro generation:

$$\sum_{b\in\mathcal{B}_t}g_{ ext{hydro}}^{bh} imes\Delta_b=\mu_t^h\quad orall h\in\mathcal{H},\,t\in\mathcal{T},$$

Expansions:

$$x_k \in [0,1], \quad \forall k \in \mathcal{K}, i \in \{1,\ldots,N\}.$$

EMERALD demonstration

EMERALD case study uses...

- Three regions (NI, HAY, SI).
- Four seasons with 10 load blocks each.
- 16 load growth scenarios.
- 13 historical years model seasonal hydrological inflows.
- Data based on two-stage model of NZ system. $^{\rm 3}$

³Ferris & Philpott, 100% renewable electricity with storage (2019) http://www.epoc.org.nz.

Demand and carbon price scenarios are related

- Electric vehicles;
- Industrial load;
- Consumer load;
- Tiwau (or replacement).
- ▶ NZ CCC CO₂-e budgets in target years are assumed.
- ► CO₂-e budgets affect carbon prices.
- Carbon prices affect fossil fuels and electricity prices.
- Electric vehicle demand = f(gasoline price, electricity price).

Demand and carbon price scenarios are related

Annual total energy demand increases from

- Electric vehicles;
- Industrial load;
- Consumer load;
- Tiwau (or replacement).

▶ NZ CCC CO₂-e budgets in target years are assumed.

- ► CO₂-e budgets affect carbon prices.
- Carbon prices affect fossil fuels and electricity prices.
- Electric vehicle demand = f(gasoline price, electricity price).

Demand and carbon price scenarios are related

- Electric vehicles;
- Industrial load;
- Consumer load;
- Tiwau (or replacement).
- ▶ NZ CCC CO₂-e budgets in target years are assumed.
- ► CO₂-e budgets affect carbon prices.
- Carbon prices affect fossil fuels and electricity prices.
- Electric vehicle demand = f(gasoline price, electricity price).

Demand and carbon price scenarios are related

- Electric vehicles;
- Industrial load;
- Consumer load;
- Tiwau (or replacement).
- ▶ NZ CCC CO₂-e budgets in target years are assumed.
- ► CO₂-e budgets affect carbon prices.
- Carbon prices affect fossil fuels and electricity prices.
- Electric vehicle demand = f(gasoline price, electricity price).

Demand and carbon price scenarios are related

- Electric vehicles;
- Industrial load;
- Consumer load;
- Tiwau (or replacement).
- ▶ NZ CCC CO₂-e budgets in target years are assumed.
- ► CO₂-e budgets affect carbon prices.
- Carbon prices affect fossil fuels and electricity prices.
- Electric vehicle demand = f(gasoline price, electricity price).

Scenario tree for demand and carbon price

mytree, data = tree_with_data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon
1,-,0.1,8.525,27.727,5.475,50
11,1,0.1389,10.750025,32.16332,5.475,50
12,1,0.1389,11.50875,29.168804,5.475,50
111,11,0.55,12.276,35.49056,5.475,200
112,11,0.55,11.227425,28.55881,5.475,200
121,12,0.55,13.14555,32.191047,5.475,200
122,12,0.55,12.028775,25.897018,5.475,200
1111,111,5,15.8565,39.566429,5.475,500
1121,112,5,14.50955,31.802869,5.475,500

. . . .

Scenario tree for demand and carbon price

mytree, data = tree_with_data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon
1,-,0.1,8.525,27.727,5.475,50
11,1,0.1389,10.750025,32.16332,5.475,50
12,1,0.1389,11.50875,29.168804,5.475,50
111,11,0.55,12.276,35.49056,5.475,200
112,11,0.55,11.227425,28.55881,5.475,200
121,12,0.55,13.14555,32.191047,5.475,200
122,12,0.55,12.028775,25.897018,5.475,200
1111,111,5,15.8565,39.566429,5.475,500
1121,112,5,14.50955,31.802869,5.475,500

. . . .

JuDGE.visualize_tree(mytree, data)

Scenario tree

model = JuDGEModel(mytree, ConditionallyUniformProbabilities, sub_problems, JuDGE_MP_Solver, discount_factor=0.92) risk=Risk(0.95,(1/16))

model = JuDGEModel(mytree, ConditionallyUniformProbabilities, sub_problems, JuDGE_MP_Solver, discount_factor=0.92) risk=Risk(0.95,(1/16))

model = JuDGEModel(mytree, ConditionallyUniformProbabilities, sub_problems, JuDGE_MP_Solver, discount_factor=0.92) risk=Risk(0.95,(1/16))

Running EMERALD

Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)

solution = JuDGE.solution_to_dictionary(model)

(some code to set up custom_plots using plotly)
JuDGE.visualize_tree(mytree, solution,
custom=custom_plots)

Running EMERALD

Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))
resolve_subproblems(model)
solution = JuDGE.solution_to_dictionary(model)
(some code to set up custom_plots using plotly)
JuDGE.visualize_tree(mytree, solution,
custom=custom_plots)

EMERALD results

Outline

Multi-horizon modelling and JuDGE

Multi-horizon stochastic programming and capacity planning The JuDGE package

EMERALD demonstration

The New Zealand model

Demonstration

Results

Central planning versus commercial investment

1. Computable general equilibrium models (e.g. C-PLAN);

Computable general equilibrium models (e.g. C-PLAN);
 Agent simulation models (e.g. ENZ);

- 1. Computable general equilibrium models (e.g. C-PLAN);
- 2. Agent simulation models (e.g. ENZ);
- 3. Deterministic planning models (e.g. GEM);

- 1. Computable general equilibrium models (e.g. C-PLAN);
- 2. Agent simulation models (e.g. ENZ);
- 3. Deterministic planning models (e.g. GEM);
- 4. Stochastic, risk-averse planning models (e.g. EMERALD);

- 1. Computable general equilibrium models (e.g. C-PLAN);
- 2. Agent simulation models (e.g. ENZ);
- 3. Deterministic planning models (e.g. GEM);
- 4. Stochastic, risk-averse planning models (e.g. EMERALD);
- 5. Do models (2), (3), (4) yield dynamic investment (partial) equilibrium?

Dynamic investment equilibrium by backward induction

Dynamic investment equilibrium = EMERALD

- Optimal risk-averse plan from EMERALD matches partial equilibrium when risk measures are coherent and risk-trading instruments are available.⁴
- Each agent in EMERALD has their own coherent risk measure. This corresponds to a nested risk measure with single-stage risk sets that vary with node.
- What model of social risk model should we use in EMERALD? JuDGE uses an end-of-horizon risk measure.
- NOTE: the intersection of agent risk sets define a nested risk measure for the social planner that might not be an end-of-horizon measure.

⁴Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022.

The End

JuDGE. jl Julia Library downloadable from

https://github.com/EPOC-NZ/JuDGE.jl

My contact:

a.philpott@auckland.ac.nz Technical questions to: a.downward@auckland.ac.nz