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What is EMERALD?

– EMERALD is EPOC’s stochastic version of the Electricity
Authority GAMS package GEM.

– used to study the effect of New Zealand carbon policy on
optimal investment in generation capacity over a 30 year
planning horizon with future uncertainty.

– applies the JuDGE.jl Julia package to solve a multistage
stochastic program in a scenario tree.

– JuDGE visualizations enable one to explore the optimal
expansion plan.

– This talk presents a summary and some results of EMERALD.
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Multi-horizon planning

2021 2025 2030 2040 2050

high demand

low demand

Choose capital investments
to make in node n, and minimize 
operating costs for ten years

low

low

high

high

Capacity-expansion decisions over longer time scale (5 years or 10
years) result in lower operational costs, or higher revenue in the
future.



Multi-horizon scenario trees

2021 2025 2030 2040 2050
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low demand

low

low
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high

Operating model is a 
stochastic program at 
a finer time scale.

Operational decisions with short-term uncertainty optimized by a
stochastic program.



https://github.com/EPOC-NZ/JuDGE.jl

JuDGE stands for Julia Decomposition for Generalized Expansion.).

– allows users to easily implement multi-horizon optimization models using the
JuMP modelling language;

– can apply end-of-horizon risk-measures in objective function and/or the
constraints; and

– outputs an interactive view of the results over the scenario tree, enabling decision
makers to explore the optimal expansion plan.

https://github.com/EPOC-NZ/JuDGE.jl
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JuDGE modelling framework

To apply JuDGE we require...

– a tree with corresponding data and probabilities for each node;

– a subproblem defined as a JuMP model for each node in the tree; and

– expansion (and/or shutdown) decisions and costs;

– a choice of solver for master and subproblem.

JuDGE automatically forms a restricted master problem, and applies
Dantzig-Wolfe decomposition.2

The LP relaxation of the restricted master problem is typically solved with an
interior point method, and the subproblems are solved as mixed-integer programs.

JuDGE can formulate the deterministic equivalent problem directly as a JuMP
model (mixed-integer program).

2Singh, P. & Wood, Operations Research, 2009.
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The New Zealand model
Expansions and shutdowns

Optimize capacity expansion in response
to uncertainty represented by a scenario
tree.

Model is a risk-averse central-planning
model minimizing discounted disbenefit
Z summed from 2021-2050.

Risk is modelled using a convex combina-
tion of expected value and average value
at risk, so Risk(λ, α) is

(1− λ)E[Z ] + λAVaR1−α[Z ]

.

10/25/21, 10:52 PM JuDGEoutput (45).svg

file:///C:/Users/adow031/Downloads/JuDGEoutput (45).svg 1/1
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2047-node scenario tree.
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The New Zealand model
Defining the subproblems

Sets:

– seasons t ∈ T ;

– load blocks b ∈ Bt , t ∈ T ;

– hydrological years h ∈ H;

– technologies k ∈ K.

Variables:

– xk capacity to build for technology k ;

– gbh
k generation from technology k in load block b, with hydrological year h.

Parameters:

– db demand in load block b;

– uk initial capacity of technology k;

– Uk maximum capacity increment of each new technology k ;

– θbk is the capacity factor for technology k , in load block b.
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Medium-term Operational Model
Objective Functions

Subproblem at node n minimizes the operational costs of the electricity system:

min ∑
t∈T

∑
b∈Bt

∆b ∑
h∈H

ρh ∑
k∈K

(ck + τek)g
bh
k ,

where ∆b is the number of hours corresponding to load block b;
ρh is the probability of hydrological year h;
ck is the marginal cost of technology k ;
ek gives the emissions factor of technology k ;
τ is the carbon tax.

Cost of investments over the tree:

min ∑
n∈N

ϕn ∑
k∈K

Ckxk ,

ϕn is the (discounted) probability of reaching node n;
Ck is the capital cost (per unit) of technology k ;
xk ∈ [0, 1] represents investment in technology k.
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Medium-term operations
Subproblem constraints

Load balance:
∑
k∈K

gbh
k = db, ∀b ∈ B, h ∈ H,

Generation capacity:

0 ≤ gbh
k ≤ θbk (uk + xkUk) ∀b ∈ Bt , t ∈ T , h ∈ H, k ∈ K,

Stored hydro generation:

∑
b∈Bt

gbh
hydro × ∆b = µh

t ∀h ∈ H, t ∈ T ,

Expansions:
xk ∈ [0, 1], ∀k ∈ K, i ∈ {1, . . . ,N}.



EMERALD demonstration

EMERALD case study uses...

– Three regions (NI, HAY, SI).

– Four seasons with 10 load blocks each.

– 16 load growth scenarios.

– 13 historical years model seasonal hydrological inflows.

– Data based on two-stage model of NZ system.3

3Ferris & Philpott, 100% renewable electricity with storage (2019) http://www.epoc.org.nz.

http://www.epoc.org.nz


EMERALD input data
Demand and carbon price scenarios are related

▶ Annual total energy demand increases from
▶ Electric vehicles;
▶ Industrial load;
▶ Consumer load;
▶ Tiwau (or replacement).

▶ NZ CCC CO2-e budgets in target years are assumed.

▶ CO2-e budgets affect carbon prices.

▶ Carbon prices affect fossil fuels and electricity prices.

▶ Electric vehicle demand = f(gasoline price,electricity price).
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EMERALD input data
Scenario tree for demand and carbon price

mytree, data = tree with data(myscenariotree.csv)

n,p,EVTWh,industryTWh,consumerTWh,TiwauTWh,carbon

1,-,0.1,8.525,27.727,5.475,50

11,1,0.1389,10.750025,32.16332,5.475,50

12,1,0.1389,11.50875,29.168804,5.475,50

111,11,0.55,12.276,35.49056,5.475,200

112,11,0.55,11.227425,28.55881,5.475,200

121,12,0.55,13.14555,32.191047,5.475,200

122,12,0.55,12.028775,25.897018,5.475,200

1111,111,5,15.8565,39.566429,5.475,500

1121,112,5,14.50955,31.802869,5.475,500

....

JuDGE.visualize tree(mytree, data)
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Scenario tree



Creating the JuDGE model

model = JuDGEModel(mytree,

ConditionallyUniformProbabilities,

sub problems,

JuDGE MP Solver,

discount factor=0.92)

risk=Risk(0.95,(1/16))
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Running EMERALD
Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))

resolve subproblems(model)

solution = JuDGE.solution to dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,

custom=custom plots)



Running EMERALD
Solving and producing output

JuDGE.solve(model,termination=Termination(reltol=0.001))

resolve subproblems(model)

solution = JuDGE.solution to dictionary(model)

(some code to set up custom plots using plotly)

JuDGE.visualize tree(mytree, solution,

custom=custom plots)



EMERALD results
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Models for optimal planning

1. Computable general equilibrium models (e.g. C-PLAN );

2. Agent simulation models (e.g. ENZ);

3. Deterministic planning models (e.g. GEM);

4. Stochastic, risk-averse planning models (e.g. EMERALD);

5. Do models (2), (3), (4) yield dynamic investment (partial)
equilibrium?
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3. Deterministic planning models (e.g. GEM);

4. Stochastic, risk-averse planning models (e.g. EMERALD);

5. Do models (2), (3), (4) yield dynamic investment (partial)
equilibrium?



Dynamic investment equilibrium by backward induction

Va(x,1111)

Va(x,1112)

Va(x,1121)

Va(x,1122)

Va(x,1211)

Va(x,1212)

Va(x,1221)

Va(x,1222)

Va(x,111) = max{f(u)
+ 0.5 Va(x+u,1111) + 0.5 Va(x+u,1112) }



Dynamic investment equilibrium = EMERALD

▶ Optimal risk-averse plan from EMERALD matches partial
equilibrium when risk measures are coherent and risk-trading
instruments are available.4

▶ Each agent in EMERALD has their own coherent risk measure.
This corresponds to a nested risk measure with single-stage risk
sets that vary with node.

▶ What model of social risk model should we use in EMERALD?
JuDGE uses an end-of-horizon risk measure.

▶ NOTE: the intersection of agent risk sets define a nested risk
measure for the social planner that might not be an
end-of-horizon measure.

4Ralph & Smeers, SIOPT, 2015, Ferris & P., Operations Research, 2022.



The End

JuDGE.jl Julia Library downloadable from

https://github.com/EPOC-NZ/JuDGE.jl

My contact: a.philpott@auckland.ac.nz

Technical questions to: a.downward@auckland.ac.nz

https://github.com/EPOC-NZ/JuDGE.jl
a.philpott@auckland.ac.nz
a.downward@auckland.ac.nz
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