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About Norus
Tech company specialized in the electricity market. By connecting our academic 
and practical know-hows, we build innovative solutions for our clients improving 
their operational and decision-making process.
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To connect all trading and strategic 
decision in energy markets through the 
whole journey making it easier for different 
areas to exchange information natively, 
operating under an integrated framework.

What are we aiming for?

An environment where all apps developed 
by Norus and future partner will be 
delivered.

An ecosystem 
for apps to the 
energy market 
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All development and analysis in this presentation are made 

using Power Fusion
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Some characteristics

• State-of-the-art SDDP algorithm

• Hydro and Thermal plants are modelled individually

• High flexibility in defining time steps and stages

• Allow different modelling in the forward and backward pass

Norus’ Scheduling Model
Allow specialized studies and analyzing 

the Impact of new methodologies



About the Brazilian 
Electricity Market
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Brazilian Market Design and Trading

In 2024 more 
consumers were 
allowed to opt-in

Expected that by 
2028 all consumers 
will be able to chose

Jun/24 to May/25 → 42.2 GWavg = 59.4% Jun/24 to May/25 → 28.8 GWavg = 40.6%

Considering that we face highly volatile market, as clients migrate to the Free Market the bigger is the need for 
long-term contracts increasing also the trading volumes.

Total volume of registerd contracts was 165 TWh in Mar/2025 which is approxametly 3 times de consumption 57 TWh

Regulated Market

Residential and small 
Commercial consumers

Larger consumer that 
didn’t opt to migrate to 

the free market

Tariffs

Free Market

Larger consumers

Retail trading companies

Negotiated prices
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The Brazilian Case

Generation
Most generation is operated centrally by ONS

Some numbers

• Total consumption in 2024 was 594 TWh

• Total generation capacity is 236 GW

• Hydro generation: 108,2 GW ~ 46%

• Wind and Solar: 90,3 GW ~38%
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The Brazilian Case
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The Brazilian Case
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Brazilian Hydrothermal (wind+solar) Scheduling

Main aspects

• Large reservoirs that require longer planning periods

• Uncertainty on Inflows – Other uncertainties that are ignored: demand, wind, solar, ...

• Coupled in Time – Reservoirs storage and inflow scenario impact the future decisions

• Coupled in Space – River cascades and Network transmission system conect decisions

• Large problem – Number of variables and constraints
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Brazilian Hydrothermal (wind+solar) Scheduling

Main aspects

• Large reservoirs that require longer planning periods

• Uncertainty on Inflows – Other uncertainties that are ignored: demand, wind, solar, ...

• Coupled in Time – Reservoirs storage and inflow scenario impact the future decisions

• Coupled in Space – River cascades and Network transmission system conect decisions

• Large problem – Number of variables and constraints

Strategy: Divide to Conquer!
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Brazilian Hydrothermal Scheduling
• Scheduling is divided in time with different horizons

• Models are coupled through Future Cost Functions

• Models need to be approved by a commission

• They are used to define operation and pricing in Brazil
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Day-Ahead
• Horizon: 7 days / 30-minutes - daily
• Detailed modeling (UC, Network, …)
• No uncertainty

Stochastic
Simpler Modelling

HO
RI

ZO
NFCF

FCF

Short Term
• Horizon: 2 months / Weekly-Monthly
• More detailed modeling
• Uncertainty in Inflows

Medium Term
• Horizon: 10 year / Monthly
• Individualized and Aggregated Reservoirs
• Uncertainty in Inflows



Modelling is always changing

Example: In January/2025 the Medium Term started to officially model hydro power plants as  

individual plants in the first 12 months and then aggregated from stage 13 onward, resulting in 

a relevant increase in computational burden
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Why models are always changing?

Someone is not happy with its results!

• Aggregated water values do not provide the signal for correct allocation of hydro resources

• Thermal plants dispatch needs to account for minimum up and down time

• Hydro plants can not operate in certain regions

• Reservoirs are depleting more than expected

• Marginal costs present volatility that does not make sense

• And so on…
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Unreasonable volatility
Work in partnership with the Brazilian market operator (CCEE)
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What happened:

There was no special reason for 
the increase and decrease, 
except for the change in past 
inflows.
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Example: Volatility of the  ystem’s Marginal Cost
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Motivation:

What strategies can be 
employed to reduce the policy’s 
reliance on past inflows?
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What was happening that led to such sensitivity

ሶ𝑦𝑡 = ෍

𝑝=1

𝑃𝑡

∅𝑝
𝑡 ሶ𝑦𝑡−𝑝 + 𝑙𝑡

SDDP builds policy iteratively
• Visit random scenarios in the Forward Pass

• Creates approximations of the future cost in the Backward Pass 

• When considering temporal correlation for inflows, the previous inflows become a state

• This is a requirement to adjust the policy for any random scenario 

PAR is a linear model with randomness on the residual
• It is considered one of the best models for generating inflow scenarios

• Its linearity with constant linear coefficients creates an accumulative over/under valuation
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Why building a policy with PAR model may 
over/under value the inflow? 

ሶ𝑦𝑡 = 0.8 ሶ𝑦𝑡−1 + 𝑙𝑡

Assume a Hydro Power Plant with linear regression coefficient of 0.8 for all stages

If SDDP visits a scenario where the inflow in the first stage is 10, when creating a cut solving 
the second stage… there will be an inflow valuation based on an inflow equals to 10!

Say that in the second iteration the inflow is now 5, when evaluating the cut from the first 
iteration we are sure that there will be a reduction of 4 in all branches in the second stage.

Although we know that on some measure it is true that the expected inflow shall decrease, 
this is different than assuming that it changes for all branches in the same way.
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Therefore, we were looking for an inflow model that accounts for uncertainty also 
in the linear coefficient.



Multidimensional Quantile Regression (MQR) Model

ሶ𝑥𝑡 𝜌, ሶ𝑥𝑡−1 = 𝑀𝑡
𝜌

ሶ𝑥𝑡−1 + 𝐷𝑡
𝜌

Univariate version proposed by G. Pritchard in [2]

𝑀𝑡
𝜌 and 𝐷𝑡

𝜌
 depend on percentile 𝜌

21[2]G. Pritchard, “Stochastic inflow modeling for hydropower scheduling problems,” Eur. J. Oper. Res., vol. 246, no. 2, pp. 496–504, Oct. 2015
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𝜌 and 𝐷𝑡
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Load matrix 𝛀𝒕 to spatially couple generation inflow of 
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Multidimensional Quantile Regression (MQR) Model
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𝜌
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Univariate version proposed by G. Pritchard in [2]

𝑀𝑡
𝜌 and 𝐷𝑡

𝜌
 depend on percentile 𝜌

Important remarks:

First-order model
Random parameters in both linear and constant coefficients
Transformation to guarantee strict positive inflow values!

Load matrix 𝛀𝒕 to spatially couple generation inflow of 
several hydro plants
Obtained from the spatial correlation of the historical 
residuals 𝑟𝑒𝑠𝑡 = 𝑀𝑡

𝜌
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Statistical Moments Assessment
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PAR MQRHistorical
Spatial Correlation Comparison
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MQR model characteristics
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• Multiple percentiles provides a comprehensive 
representation of the inflow sample space 

• Weaker temporal correlation w.r.t the PAR model Not as effective for obtaining 
trial points during the Forward 
pass

Suitable for policy construction
during the Backward pass



Numerical experiments

27

Simplified and large-scale instance of the Brazilian LTHS problem
• 130 Thermal plants – 16 GWa
• 140 Hydro plants (79 run-of-river) – 87 GWa
• Net demand – 59 GWa
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Optimization Settings
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• Forward pass:

• PAR model

• Backward pass:

• PAR model /MQR model

• Conditional Value-at-Risk (CVaR1-α)

• CVAR_1: α = 25% and λ = 35% (Standard)

• CVAR_2: α = 15% and λ = 40% (+)

• CVAR_3: α = 20% and λ = 90% (+++)
• Computational Setup:

• 20 parallel forward passes per iteration / 20 scenarios per stage

• 200 iterations, resulting in 4,000 cuts

• Cut selection strategy

• Horizon: 36 months divided into monthly time-steps



Simulation Framework
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• 13-month rolling-horizon simulation

• 5,000 out-of-sample PAR-generated inflow scenarios

• Historical observed inflows

Policy Forward
Inflow model

Backward
Inflow model

CVAR
(α, λ)

PAR_CVaR_1 PAR PAR (25,35)

PAR_CVaR_2 PAR PAR (15,40)

PAR_CVaR_3 PAR PAR (20,90)

MQR_CVaR_1 PAR MQR (25,35)

MQR_CVaR_2 PAR MQR (15,40)

MQR_CVaR_3 PAR MQR (20,90)



Rolling-horizon simulation under observed inflows
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Rolling-horizon simulation under observed inflows
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Rolling-horizon simulation under out-of-sample inflows
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Rolling-horizon simulation under observed inflows
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Rolling-horizon simulation under out-of-sample inflows
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Conclusions
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• MQR-based policies compared to the PAR-based policies:
• Maintains similar reservoir levels when paired with an adequate risk-

aversion calibration
• Mitigate the volatility observed in energy prices and thermal generation
• Less sensitive to CVaR parameter settings

• Challenges:
• Complexity: Two inflow models for a SDDP execution (two formulations!)
• Adequate risk-aversion calibration

Soon a paper will be available with details!



Título da apresentação em até três linhas. 
Lorem ipsum dolor sit amet, consectetuer 
adipiscing elit, sed diam nonummy.

Subtítulo da apresentação. Lorem ipsum dolor sit amet, 
consectetuer adipiscing elit.

Norus Questions?

Thank you!
vitor.matos@norus.com.br



What is to come…
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Toward a Unified SDDP Framework for 
Heterogeneous Stochastic Dynamics
• Ignoring uncertainties from other sources than Inflows, may lead to regrettable 

decisions and increase the price volatility
• We are developing in Power Fusion a generalized setup that allow for various stochastic 

process modelling to be used in the SDDP algorithm
Benefits:
• Decision process allows multiple independent stochastic process
• Modelling uncertainty in different timeframes in the same problem
• Physical and Statistical model can be combined
• Allow independent decision on time steps and stages
Challenges:
• Growth of the combinatorial problem with an increased number of random variables 

with different stochastic processes
• Need to use a simplified multi-cut to allow cut sharing
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Unreasonable volatility
Work in partnership with the Brazilian market operator (CCEE)
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Rolling-horizon simulation under out-of-sample inflows
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Volatility –Marginal Cost
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Volatility – Thermal Generation
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Volatility – Storage Energy
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